Matching Items (27)
Filtering by

Clear all filters

190942-Thumbnail Image.png
Description
It is difficult to imagine a society that does not utilize teams. At the same time, teams need to evolve to meet today’s challenges of the ever-increasing proliferation of data and complexity. It may be useful to add artificial intelligent (AI) agents to team up with humans. Then, as AI

It is difficult to imagine a society that does not utilize teams. At the same time, teams need to evolve to meet today’s challenges of the ever-increasing proliferation of data and complexity. It may be useful to add artificial intelligent (AI) agents to team up with humans. Then, as AI agents are integrated into the team, the first study asks what roles can AI agents take? The first study investigates this issue by asking whether an AI agent can take the role of a facilitator and in turn, improve planning outcomes by facilitating team processes. Results indicate that the human facilitator was significantly better than the AI facilitator at reducing cognitive biases such as groupthink, anchoring, and information pooling, as well as increasing decision quality and score. Additionally, participants viewed the AI facilitator negatively and ignored its inputs compared to the human facilitator. Yet, participants in the AI Facilitator condition performed significantly better than participants in the No Facilitator condition, illustrating that having an AI facilitator was better than having no facilitator at all. The second study explores whether artificial social intelligence (ASI) agents can take the role of advisors and subsequently improve team processes and mission outcome during a simulated search-and-rescue mission. The results of this study indicate that although ASI advisors can successfully advise teams, they also use a significantly greater number of taskwork interventions than teamwork interventions. Additionally, this study served to identify what the ASI advisors got right compared to the human advisor and vice versa. Implications and future directions are discussed.
ContributorsBuchanan, Verica (Author) / Cooke, Nancy J. (Thesis advisor) / Gutzwiller, Robert S. (Committee member) / Roscoe, Rod D. (Committee member) / Arizona State University (Publisher)
Created2023
171652-Thumbnail Image.png
Description
The implementation of chatbots in customer service is widely prevalent in today’s world with insufficient research to appropriately refine all of their conversational abilities. Chatbots are favored for their ability to handle simple and typical requests made by users, but chatbots have proven to be prone to conversational breakdowns. The

The implementation of chatbots in customer service is widely prevalent in today’s world with insufficient research to appropriately refine all of their conversational abilities. Chatbots are favored for their ability to handle simple and typical requests made by users, but chatbots have proven to be prone to conversational breakdowns. The study researched how the use of repair strategies to combat conversational breakdowns in a simple versus complex task setting affected user experience. Thirty participants were collected and organized into six different groups in a two by three between subjects factorial design. Participants were assigned one of two tasks (simple or complex) and one of three repair strategies (repeat, confirmation, or options). A Wizard-of-Oz approach was used to simulate a chatbot that participants interacted with to complete a task in a hypothetical setting. Participants completed the task with this researcher-controlled chatbot as it intentionally failed the conversation multiple times, only to repair it with a repair strategy. Participants recorded their user experience regarding the chatbot afterwards. An Analysis of Covariance statistical test was run with task duration being a covariate variable. Findings indicate that the simple task difficulty was significant in improving the user experience that participants recorded whereas the particular repair strategy had no effect on the user experience. This indicates that simpler tasks lead to improved positive user experience and the more time that is spent on a task, the less positive the user experience. Overall, results associated with the effects of task difficulty and repair strategies on user experience were only partially consistent with previous literature.
ContributorsRios, Aaron (Author) / Cooke, Nancy J. (Thesis advisor) / Gutzwiller, Robert S. (Committee member) / Chiou, Erin K. (Committee member) / Arizona State University (Publisher)
Created2022
157402-Thumbnail Image.png
Description
As deception in cyberspace becomes more dynamic, research in this area should also take a dynamic approach to battling deception and false information. Research has previously shown that people are no better than chance at detecting deception. Deceptive information in cyberspace, specifically on social media, is not exempt from this

As deception in cyberspace becomes more dynamic, research in this area should also take a dynamic approach to battling deception and false information. Research has previously shown that people are no better than chance at detecting deception. Deceptive information in cyberspace, specifically on social media, is not exempt from this pitfall. Current practices in social media rely on the users to detect false information and use appropriate discretion when deciding to share information online. This is ineffective and will predicatively end with users being unable to discern true from false information at all, as deceptive information becomes more difficult to distinguish from true information. To proactively combat inaccurate and deceptive information on social media, research must be conducted to understand not only the interaction effects of false content and user characteristics, but user behavior that stems from this interaction as well. This study investigated the effects of confirmation bias and susceptibility to deception on an individual’s choice to share information, specifically to understand how these factors relate to the sharing of false controversial information.
ContributorsChinzi, Ashley (Author) / Cooke, Nancy J. (Thesis advisor) / Chiou, Erin (Committee member) / Becker, David V (Committee member) / Arizona State University (Publisher)
Created2019
156947-Thumbnail Image.png
Description
Interface design has a large impact on the usability of a system, and the addition of multitasking only makes these systems more difficult to use. Information processing, mental workload, and interface design are determining factors that impact the performance of usability, and therefore interface design needs to be more adapted

Interface design has a large impact on the usability of a system, and the addition of multitasking only makes these systems more difficult to use. Information processing, mental workload, and interface design are determining factors that impact the performance of usability, and therefore interface design needs to be more adapted to users undergoing a high mental workload. This study examines how a primary task, visual tracking, is affected by a secondary task, memory. Findings show that a high mental workload effects reaction time and memory performance on layouts with a high index of difficulty. Further research should analyze the effects of manipulating target size and distance apart independently from manipulating the index of difficulty on performance.
ContributorsSrikantha, Sainjeev (Author) / Gray, Robert (Thesis advisor) / Cooke, Nancy J. (Committee member) / Branaghan, Russell (Committee member) / Arizona State University (Publisher)
Created2018
153958-Thumbnail Image.png
Description
Node-link diagrams are widely used to visualize the relational structure of real world datasets. As identical data can be visualized in infinite ways by simply changing the spatial arrangement of the nodes, one of the important research topics of the graph drawing community is to visualize the data in the

Node-link diagrams are widely used to visualize the relational structure of real world datasets. As identical data can be visualized in infinite ways by simply changing the spatial arrangement of the nodes, one of the important research topics of the graph drawing community is to visualize the data in the way that can facilitate people's comprehension. The last three decades have witnessed the growth of algorithms for automatic visualization. However, despite the popularity of node-link diagrams and the enthusiasm in improving computational efficiency, little is known about how people read these graphs and what factors (layout, size, density, etc.) have impact on their effectiveness (the usability aspect of the graph, e.g., are they easy to understand?). This thesis is comprehensive research to investigate the factors that affect people's understanding of node-link diagrams using eye-tracking methods. Three experiments were conducted, including 1) a pilot study with 22 participants to explore the layout and size effect; 2) an eye tracking experiment with 43 participants to investigate the layout, size and density effect on people's graph comprehension using abstract node-link diagram and generic tasks; and 3) an eye tracking experiment with the same participants to investigate the same effects using a real visualization analytic application. Results showed that participants' spatial reasoning ability had significant impact on people's graph reading performance. Layout, size, and density were all found to be significant effects under different task circumstances. The applicability of the eye tracking methods on visualization evaluation has been confirmed by providing detailed evidence that demonstrates the cognitive process of participants' graph reading behavior.
ContributorsLiu, Qing (Author) / McKenna, Anna (Thesis advisor) / Jennifer, Jennifer (Committee member) / Cooke, Nancy J. (Committee member) / Arizona State University (Publisher)
Created2015
155132-Thumbnail Image.png
Description
This research evaluates a cyber test-bed, DEXTAR (Defense Exercises for Team Awareness Research), and examines the relationship between good and bad team performance in increasingly difficult scenarios. Twenty-one computer science graduate students (seven three-person teams), with experience in cybersecurity, participated in a team-based cyber defense exercise in the context of

This research evaluates a cyber test-bed, DEXTAR (Defense Exercises for Team Awareness Research), and examines the relationship between good and bad team performance in increasingly difficult scenarios. Twenty-one computer science graduate students (seven three-person teams), with experience in cybersecurity, participated in a team-based cyber defense exercise in the context of DEXTAR, a high fidelity cybersecurity testbed. Performance measures were analyzed in addition to team process, team behavior, and workload to examine the relationship between good and bad teams. Lessons learned are reported that will inform the next generation of DEXTAR.
ContributorsBradbury, Aaron (Author) / Cooke, Nancy J. (Thesis advisor) / Branaghan, Russell (Committee member) / Roscoe, Rod (Committee member) / Arizona State University (Publisher)
Created2016
154998-Thumbnail Image.png
Description
Intelligence analysts’ work has become progressively complex due to increasing security threats and data availability. In order to study “big” data exploration within the intelligence domain the intelligence analyst task was abstracted and replicated in a laboratory (controlled environment). Participants used a computer interface and movie database to

Intelligence analysts’ work has become progressively complex due to increasing security threats and data availability. In order to study “big” data exploration within the intelligence domain the intelligence analyst task was abstracted and replicated in a laboratory (controlled environment). Participants used a computer interface and movie database to determine the opening weekend gross movie earnings of three pre-selected movies. Data consisted of Twitter tweets and predictive models. These data were displayed in various formats such as graphs, charts, and text. Participants used these data to make their predictions. It was expected that teams (a team is a group with members who have different specialties and who work interdependently) would outperform individuals and groups. That is, teams would be significantly better at predicting “Opening Weekend Gross” than individuals or groups. Results indicated that teams outperformed individuals and groups in the first prediction, under performed in the second prediction, and performed better than individuals in the third prediction (but not better than groups). Insights and future directions are discussed.
ContributorsBuchanan, Verica (Author) / Cooke, Nancy J. (Thesis advisor) / Maciejewski, Ross (Committee member) / Craig, Scotty D. (Committee member) / Arizona State University (Publisher)
Created2016
153492-Thumbnail Image.png
Description
Although current urban search and rescue (USAR) robots are little more than remotely controlled cameras, the end goal is for them to work alongside humans as trusted teammates. Natural language communications and performance data are collected as a team of humans works to carry out a simulated search and rescue

Although current urban search and rescue (USAR) robots are little more than remotely controlled cameras, the end goal is for them to work alongside humans as trusted teammates. Natural language communications and performance data are collected as a team of humans works to carry out a simulated search and rescue task in an uncertain virtual environment. Conditions are tested emulating a remotely controlled robot versus an intelligent one. Differences in performance, situation awareness, trust, workload, and communications are measured. The Intelligent robot condition resulted in higher levels of performance and operator situation awareness (SA).
ContributorsBartlett, Cade Earl (Author) / Cooke, Nancy J. (Thesis advisor) / Kambhampati, Subbarao (Committee member) / Wu, Bing (Committee member) / Arizona State University (Publisher)
Created2015
152869-Thumbnail Image.png
Description
Preoperative team briefings have been suggested to be important for improving team performance in the operating room. Many high risk environments have accepted team briefings; however healthcare has been slower to follow. While applying briefings in the operating room has shown positive benefits including improved communication and perceptions of teamwork,

Preoperative team briefings have been suggested to be important for improving team performance in the operating room. Many high risk environments have accepted team briefings; however healthcare has been slower to follow. While applying briefings in the operating room has shown positive benefits including improved communication and perceptions of teamwork, most research has only focused on feasibility of implementation and not on understanding how the quality of briefings can impact subsequent surgical procedures. Thus, there are no formal protocols or methodologies that have been developed.

The goal of this study was to relate specific characteristics of team briefings back to objective measures of team performance. The study employed cognitive interviews, prospective observations, and principle component regression to characterize and model the relationship between team briefing characteristics and non-routine events (NREs) in gynecological surgery. Interviews were conducted with 13 team members representing each role on the surgical team and data were collected for 24 pre-operative team briefings and 45 subsequent surgical cases. The findings revealed that variations within the team briefing are associated with differences in team-related outcomes, namely NREs, during the subsequent surgical procedures. Synthesis of the data highlighted three important trends which include the need to promote team communication during the briefing, the importance of attendance by all surgical team members, and the value of holding a briefing prior to each surgical procedure. These findings have implications for development of formal briefing protocols.

Pre-operative team briefings are beneficial for team performance in the operating room. Future research will be needed to continue understanding this relationship between how briefings are conducted and team performance to establish more consistent approaches and as well as for the continuing assessment of team briefings and other similar team-related events in the operating room.
ContributorsHildebrand, Emily A (Author) / Branaghan, Russell J (Thesis advisor) / Cooke, Nancy J. (Committee member) / Hallbeck, M. Susan (Committee member) / Bekki, Jennifer M (Committee member) / Blocker, Renaldo C (Committee member) / Arizona State University (Publisher)
Created2014
153207-Thumbnail Image.png
Description
Cyber threats are growing in number and sophistication making it important to continually study and improve all dimensions of cyber defense. Human teamwork in cyber defense analysis has been overlooked even though it has been identified as an important predictor of cyber defense performance. Also, to detect advanced forms of

Cyber threats are growing in number and sophistication making it important to continually study and improve all dimensions of cyber defense. Human teamwork in cyber defense analysis has been overlooked even though it has been identified as an important predictor of cyber defense performance. Also, to detect advanced forms of threats effective information sharing and collaboration between the cyber defense analysts becomes imperative. Therefore, through this dissertation work, I took a cognitive engineering approach to investigate and improve cyber defense teamwork. The approach involved investigating a plausible team-level bias called the information pooling bias in cyber defense analyst teams conducting the detection task that is part of forensics analysis through human-in-the-loop experimentation. The approach also involved developing agent-based models based on the experimental results to explore the cognitive underpinnings of this bias in human analysts. A prototype collaborative visualization tool was developed by considering the plausible cognitive limitations contributing to the bias to investigate whether a cognitive engineering-driven visualization tool can help mitigate the bias in comparison to off-the-shelf tools. It was found that participant teams conducting the collaborative detection tasks as part of forensics analysis, experience the information pooling bias affecting their performance. Results indicate that cognitive friendly visualizations can help mitigate the effect of this bias in cyber defense analysts. Agent-based modeling produced insights on internal cognitive processes that might be contributing to this bias which could be leveraged in building future visualizations. This work has multiple implications including the development of new knowledge about the science of cyber defense teamwork, a demonstration of the advantage of developing tools using a cognitive engineering approach, a demonstration of the advantage of using a hybrid cognitive engineering methodology to study teams in general and finally, a demonstration of the effect of effective teamwork on cyber defense performance.
ContributorsRajivan, Prashanth (Author) / Cooke, Nancy J. (Thesis advisor) / Ahn, Gail-Joon (Committee member) / Janssen, Marcus (Committee member) / Arizona State University (Publisher)
Created2014