Matching Items (6)
Filtering by

Clear all filters

153437-Thumbnail Image.png
Description
A converging operations approach using response time distribution modeling was adopted to better characterize the cognitive control dynamics underlying ongoing task cost and cue detection in event based prospective memory (PM). In Experiment 1, individual differences analyses revealed that working memory capacity uniquely predicted nonfocal cue detection, while proactive control

A converging operations approach using response time distribution modeling was adopted to better characterize the cognitive control dynamics underlying ongoing task cost and cue detection in event based prospective memory (PM). In Experiment 1, individual differences analyses revealed that working memory capacity uniquely predicted nonfocal cue detection, while proactive control and inhibition predicted variation in ongoing task cost of the ex-Gaussian parameter associated with continuous monitoring strategies (mu). In Experiments 2A and 2B, quasi-experimental techniques aimed at identifying the role of proactive control abilities in PM monitoring and cue detection suggested that low ability participants may have PM deficits during demanding tasks due to inefficient monitoring strategies, but that emphasizing importance of the intention can increase reliance on more efficacious monitoring strategies that boosts performance (Experiment 2A). Furthermore, high proactive control ability participants are able to efficiently regulate their monitoring strategies under scenarios that do not require costly monitoring for successful cue detection (Experiment 2B). In Experiments 3A and 3B, it was found that proactive control benefited cue detection in interference-rich environments, but the neural correlates of cue detection or intention execution did not differ when engaged in proactive versus reactive control. The results from the current set of studies highlight the importance of response time distribution modeling in understanding PM cost. Additionally, these results have important implications for extant theories of PM and have considerable applied ramifications concerning the cognitive control processes that should be targeted to improve PM abilities.
ContributorsBall, Brett Hunter (Author) / Brewer, Gene A. (Thesis advisor) / Goldinger, Stephen (Committee member) / Glenberg, Arthur (Committee member) / Amazeen, Eric (Committee member) / Arizona State University (Publisher)
Created2015
155505-Thumbnail Image.png
Description
While various collision warning studies in driving have been conducted, only a handful of studies have investigated the effectiveness of warnings with a distracted driver. Across four experiments, the present study aimed to understand the apparent gap in the literature of distracted drivers and warning effectiveness, specifically by studying various

While various collision warning studies in driving have been conducted, only a handful of studies have investigated the effectiveness of warnings with a distracted driver. Across four experiments, the present study aimed to understand the apparent gap in the literature of distracted drivers and warning effectiveness, specifically by studying various warnings presented to drivers while they were operating a smart phone. Experiment One attempted to understand which smart phone tasks, (text vs image) or (self-paced vs other-paced) are the most distracting to a driver. Experiment Two compared the effectiveness of different smartphone based applications (app’s) for mitigating driver distraction. Experiment Three investigated the effects of informative auditory and tactile warnings which were designed to convey directional information to a distracted driver (moving towards or away). Lastly, Experiment Four extended the research into the area of autonomous driving by investigating the effectiveness of different auditory take-over request signals. Novel to both Experiment Three and Four was that the warnings were delivered from the source of the distraction (i.e., by either the sound triggered at the smart phone location or through a vibration given on the wrist of the hand holding the smart phone). This warning placement was an attempt to break the driver’s attentional focus on their smart phone and understand how to best re-orient the driver in order to improve the driver’s situational awareness (SA). The overall goal was to explore these novel methods of improved SA so drivers may more quickly and appropriately respond to a critical event.
ContributorsMcNabb, Jaimie Christine (Author) / Gray, Dr. Rob (Thesis advisor) / Branaghan, Dr. Russell (Committee member) / Becker, Dr. Vaughn (Committee member) / Arizona State University (Publisher)
Created2017
171608-Thumbnail Image.png
Description
Recent findings in human interactions with complex objects, objects with unpredictable interaction dynamics, revealed predictability as an important factor when determining effective control strategies. The current study extended these findings by examining the role of predictability in the selection of control strategies in two scenarios: during initial interactions with a

Recent findings in human interactions with complex objects, objects with unpredictable interaction dynamics, revealed predictability as an important factor when determining effective control strategies. The current study extended these findings by examining the role of predictability in the selection of control strategies in two scenarios: during initial interactions with a novel, complex object, and when intentional constraints are imposed. In Experiment 1, methods with which people can identify and improve their control strategy during initial interactions with a complex object were examined. Participants actively restricted their movements at first to simplify the object’s complex behavior, then gradually adjusted movements to improve the system’s predictability. In Experiment 2, predictability of participants’ control strategies was monitored when the intention to act was changed to prioritize speed over stability. Even when incentivized to seek alternative strategies, people still prioritized predictability, and would compensate for the loss of predictability. These experiments furthered understanding of the motor control processes as a whole and may reveal important implications when generalized to other domains that also interact with complex systems.
ContributorsNguyen, Tri Duc (Author) / Amazeen, Eric (Thesis advisor) / Glenberg, Arthur (Committee member) / Amazeen, Polemnia G (Committee member) / Brewer, Gene (Committee member) / Arizona State University (Publisher)
Created2022
153980-Thumbnail Image.png
Description
This study investigated the ability to relate a test taker’s non-verbal cues during online assessments to probable cheating incidents. Specifically, this study focused on the role of time delay, head pose and affective state for detection of cheating incidences in a lab-based online testing session. The analysis of a test

This study investigated the ability to relate a test taker’s non-verbal cues during online assessments to probable cheating incidents. Specifically, this study focused on the role of time delay, head pose and affective state for detection of cheating incidences in a lab-based online testing session. The analysis of a test taker’s non-verbal cues indicated that time delay, the variation of a student’s head pose relative to the computer screen and confusion had significantly statistical relation to cheating behaviors. Additionally, time delay, head pose relative to the computer screen, confusion, and the interaction term of confusion and time delay were predictors in a support vector machine of cheating prediction with an average accuracy of 70.7%. The current algorithm could automatically flag suspicious student behavior for proctors in large scale online courses during remotely administered exams.
ContributorsChuang, Chia-Yuan (Author) / Femiani, John C. (Thesis advisor) / Craig, Scotty D. (Thesis advisor) / Bekki, Jennifer (Committee member) / Arizona State University (Publisher)
Created2015
157954-Thumbnail Image.png
Description
Social categories such as race and gender are associated by people with certain characteristics (e.g. males are angry), which unconsciously affects how people evaluate and react to a person of specific social categories. This phenomenon, referred to as implicit bias, has been the interest of many social psychologists. However, the

Social categories such as race and gender are associated by people with certain characteristics (e.g. males are angry), which unconsciously affects how people evaluate and react to a person of specific social categories. This phenomenon, referred to as implicit bias, has been the interest of many social psychologists. However, the implicit bias research has been focusing on only one social category at a time, despite humans being entities of multiple social categories. The research also neglects the behavioral contexts in which implicit biases are triggered and rely on a broad definition for the locus of the bias regulation mechanism. These limitations raise questions on whether the current bias reduction strategies are effective. The current dissertation sought to address these limitations by introducing an ecologically valid and multidimensional method. In Chapters 1 and 2, the mouse-tracking task was integrated into the implicit association task to examine how implicit biases were moderated in different behavioral contexts. The results demonstrated that the manifestation of implicit biases depended on the behavioral context as well as the distinctive identity created by the combinations of different social categories. Chapter 3 laid groundwork for testing working memory as the processing capacity for the bias regulation mechanism. The result suggested that the hand-motion tracking indices of working memory load could be used to infer the capacity of an individual to suppress the influence of implicit bias. In Chapter 4, the mouse-tracking paradigm was integrated into the Stroop task with implicit associations serving as the Stroop targets. The implicit associations produced various effects including the conflict adaptation effect, like the Stroop targets, which suggested that implicit associations and Stroop stimuli are handled by overlapping cognitive mechanisms. Throughout these efforts, the current dissertation, first, demonstrated that a more ecologically valid and multidimensional approach is required to understand biased behaviors in detail. Furthermore, the current dissertation suggested the cognitive control mechanism as a finer definition for the locus of the bias regulation mechanism, which could be leveraged to offer solutions that are more adaptive and effective in the environment where collaboration and harmony are more important than ever.
ContributorsRheem, Hansol (Author) / Becker, D. Vaughn (Thesis advisor) / Craig, Scotty D. (Committee member) / Gutzwiller, Robert S. (Committee member) / Arizona State University (Publisher)
Created2019
153559-Thumbnail Image.png
Description
ABSTRACT



Learning a novel motor pattern through imitation of the skilled performance of an expert has been shown to result in better learning outcomes relative to observational or physical practice. The aim of the present project was to examine if the advantages of imitational practice could be further

ABSTRACT



Learning a novel motor pattern through imitation of the skilled performance of an expert has been shown to result in better learning outcomes relative to observational or physical practice. The aim of the present project was to examine if the advantages of imitational practice could be further augmented through a supplementary technique derived from my previous research. This research has provided converging behavioral evidence that dyads engaged in joint action in a familiar task requiring spatial and temporal synchrony end up developing an extended overlap in their body representations, termed a joint body schema (JBS). The present research examined if inducing a JBS between a trainer and a novice trainee, prior to having the dyad engage in imitation practice on a novel motor pattern would enhance both of the training process and its outcomes.

Participants either worked with their trainer on a familiar joint task to develop the JBS (Joint condition) or performed a solo equivalent of the task while being watched by their trainer (Solo condition). Participants In both groups then engaged in blocks of alternating imitation practice and free production of a novel manual motor pattern, while their motor output was recorded. Analyses indicated that the Joint participants outperformed the Solo participants in the ability to synchronize the spatial and temporal components of their imitation movements with the trainer’s pattern-modeling movements. The same group showed superior performance when attempting to freely produce the pattern. These results carry significant theoretical and translational potentials for the fields of motor learning and rehabilitation.
ContributorsSoliman, Tamer (Author) / Glenberg, Arthur (Thesis advisor) / Helms Tillery, Stephen (Committee member) / McBeath, Michael (Committee member) / Amazeen, Eric (Committee member) / Arizona State University (Publisher)
Created2015