Matching Items (7)
Filtering by

Clear all filters

152859-Thumbnail Image.png
Description
Previous research has shown that people can implicitly learn repeated visual contexts and use this information when locating relevant items. For example, when people are presented with repeated spatial configurations of distractor items or distractor identities in visual search, they become faster to find target stimuli in these repeated contexts

Previous research has shown that people can implicitly learn repeated visual contexts and use this information when locating relevant items. For example, when people are presented with repeated spatial configurations of distractor items or distractor identities in visual search, they become faster to find target stimuli in these repeated contexts over time (Chun and Jiang, 1998; 1999). Given that people learn these repeated distractor configurations and identities, might they also implicitly encode semantic information about distractors, if this information is predictive of the target location? We investigated this question with a series of visual search experiments using real-world stimuli within a contextual cueing paradigm (Chun and Jiang, 1998). Specifically, we tested whether participants could learn, through experience, that the target images they are searching for are always located near specific categories of distractors, such as food items or animals. We also varied the spatial consistency of target locations, in order to rule out implicit learning of repeated target locations. Results suggest that participants implicitly learned the target-predictive categories of distractors and used this information during search, although these results failed to reach significance. This lack of significance may have been due the relative simplicity of the search task, however, and several new experiments are proposed to further investigate whether repeated category information can benefit search.
ContributorsWalenchok, Stephen C (Author) / Goldinger, Stephen D (Thesis advisor) / Azuma, Tamiko (Committee member) / Homa, Donald (Committee member) / Hout, Michael C (Committee member) / Arizona State University (Publisher)
Created2014
150150-Thumbnail Image.png
Description
Learning and transfer were investigated for a categorical structure in which relevant stimulus information could be mapped without loss from one modality to another. The category space was composed of three non-overlapping, linearly-separable categories. Each stimulus was composed of a sequence of on-off events that varied in duration and number

Learning and transfer were investigated for a categorical structure in which relevant stimulus information could be mapped without loss from one modality to another. The category space was composed of three non-overlapping, linearly-separable categories. Each stimulus was composed of a sequence of on-off events that varied in duration and number of sub-events (complexity). Categories were learned visually, haptically, or auditorily, and transferred to the same or an alternate modality. The transfer set contained old, new, and prototype stimuli, and subjects made both classification and recognition judgments. The results showed an early learning advantage in the visual modality, with transfer performance varying among the conditions in both classification and recognition. In general, classification accuracy was highest for the category prototype, with false recognition of the category prototype higher in the cross-modality conditions. The results are discussed in terms of current theories in modality transfer, and shed preliminary light on categorical transfer of temporal stimuli.
ContributorsFerguson, Ryan (Author) / Homa, Donald (Thesis advisor) / Goldinger, Stephen (Committee member) / Glenberg, Arthur (Committee member) / Arizona State University (Publisher)
Created2011
150044-Thumbnail Image.png
Description
The purpose of this study was to investigate the effect of partial exemplar experience on category formation and use. Participants had either complete or limited access to the three dimensions that defined categories by dimensions within different modalities. The concept of "crucial dimension" was introduced and the role it plays

The purpose of this study was to investigate the effect of partial exemplar experience on category formation and use. Participants had either complete or limited access to the three dimensions that defined categories by dimensions within different modalities. The concept of "crucial dimension" was introduced and the role it plays in category definition was explained. It was hypothesized that the effects of partial experience are not explained by a shifting of attention between dimensions (Taylor & Ross, 2009) but rather by an increased reliance on prototypical values used to fill in missing information during incomplete experiences. Results indicated that participants (1) do not fill in missing information with prototypical values, (2) integrate information less efficiently between different modalities than within a single modality, and (3) have difficulty learning only when partial experience prevents access to diagnostic information.
ContributorsCrawford, Thomas (Author) / Homa, Donald (Thesis advisor) / Mcbeath, Micheal (Committee member) / Glenberg, Arthur (Committee member) / Arizona State University (Publisher)
Created2011
150444-Thumbnail Image.png
Description
The present study explores the role of motion in the perception of form from dynamic occlusion, employing color to help isolate the contributions of both visual pathways. Although the cells that respond to color cues in the environment usually feed into the ventral stream, humans can perceive motion based on

The present study explores the role of motion in the perception of form from dynamic occlusion, employing color to help isolate the contributions of both visual pathways. Although the cells that respond to color cues in the environment usually feed into the ventral stream, humans can perceive motion based on chromatic cues. The current study was designed to use grey, green, and red stimuli to successively limit the amount of information available to the dorsal stream pathway, while providing roughly equal information to the ventral system. Twenty-one participants identified shapes that were presented in grey, green, and red and were defined by dynamic occlusion. The shapes were then presented again in a static condition where the maximum occlusions were presented as before, but without motion. Results showed an interaction between the motion and static conditions in that when the speed of presentation increased, performance in the motion conditions became significantly less accurate than in the static conditions. The grey and green motion conditions crossed static performance at the same point, whereas the red motion condition crossed at a much slower speed. These data are consistent with a model of neural processing in which the main visual systems share information. Moreover, they support the notion that presenting stimuli in specific colors may help isolate perceptual pathways for scientific investigation. Given the potential for chromatic cues to target specific visual systems in the performance of dynamic object recognition, exploring these perceptual parameters may help our understanding of human visual processing.
ContributorsHolloway, Steven R. (Author) / McBeath, Michael K. (Thesis advisor) / Homa, Donald (Committee member) / Macknik, Stephen L. (Committee member) / Arizona State University (Publisher)
Created2011
154110-Thumbnail Image.png
Description
Individual differences in working memory capacity partly arise from variability in attention control, a process influenced by negative emotional content. Thus, individual differences in working memory capacity should be predictive of differences in the ability to regulate attention in emotional contexts. To address this hypothesis, a complex-span working memory task

Individual differences in working memory capacity partly arise from variability in attention control, a process influenced by negative emotional content. Thus, individual differences in working memory capacity should be predictive of differences in the ability to regulate attention in emotional contexts. To address this hypothesis, a complex-span working memory task (symmetry span) was modified so that negative arousing images or neutral images subtended the background during the encoding phase. Across three experiments, negative arousing images impaired working memory encoding relative to neutral images, resulting in impoverished symmetry span scores. Additionally, in Experiment 3, both negative and arousing images captured attention and led to increased hit rates in a subsequent recognition task. Contrary to the primary hypothesis, individual differences in working memory capacity derived from three complex span tasks failed to moderate the effect of negative arousing images on working memory encoding across two large scale studies. Implications for theories of working memory and attention control in emotional contexts will be discussed.
ContributorsWingert, Kimberly Marie (Author) / Brewer, Gene A. (Thesis advisor) / Amazeen, Eric (Committee member) / Killeen, Peter (Committee member) / Goldinger, Stephen (Committee member) / Arizona State University (Publisher)
Created2015
157183-Thumbnail Image.png
Description
In the daily life of an individual problems of varying difficulty are encountered.

Each problem may include a different number of constraints placed upon the problem

solver. One type of problem commonly used in research are multiply-constrained

problems, such as the compound remote associates. Since their development they have

been related to creativity and

In the daily life of an individual problems of varying difficulty are encountered.

Each problem may include a different number of constraints placed upon the problem

solver. One type of problem commonly used in research are multiply-constrained

problems, such as the compound remote associates. Since their development they have

been related to creativity and insight. Moreover, research has been conducted to

determine the cognitive abilities underlying problem solving abilities. We sought to fully

evaluate the range of cognitive abilities (i.e., working memory, episodic and semantic

memory, and fluid and crystallized intelligence) linked to multiply-constrained problem

solving. Additionally, we sought to determine whether problem solving ability and

strategies (analytical or insightful) were task specific or domain general through the use

of novel problem solving tasks (TriBond and Location Bond). Results indicated that

multiply-constrained problem solving abilities were domain general, solutions derived

through insightful strategies were more often correct than analytical, and crystallized

intelligence was the only cognitive ability that provided unique predictive value.
ContributorsEllis, Derek M (Author) / Brewer, Gene A. (Thesis advisor) / Homa, Donald (Committee member) / Goldinger, Stephen (Committee member) / Arizona State University (Publisher)
Created2019
155315-Thumbnail Image.png
Description
In baseball, the difference between a win and loss can come down to a single call, such as when an umpire judges force outs at first base by typically comparing competing auditory and visual inputs of the ball-mitt sound and the foot-on-base sight. Yet, because the speed of sound in

In baseball, the difference between a win and loss can come down to a single call, such as when an umpire judges force outs at first base by typically comparing competing auditory and visual inputs of the ball-mitt sound and the foot-on-base sight. Yet, because the speed of sound in air only travels about 1100 feet per second, fans observing from several hundred feet away will receive auditory cues that are delayed a significant portion of a second, and thus conceivably could systematically differ in judgments compared to the nearby umpire. The current research examines two questions. 1. How reliably and with what biases do observers judge the order of visual versus auditory events? 2. Do observers making such order judgments from far away systematically compensate for delays due to the slow speed of sound? It is hypothesized that if any temporal bias occurs it is in the direction consistent with observers not accounting for the sound delay, such that increasing viewing distance will increase the bias to assume the sound occurred later. It was found that nearby observers are relatively accurate at judging if a sound occurred before or after a simple visual event (a flash), but exhibit a systematic bias to favor visual stimuli occurring first (by about 30 msec). In contrast, distant observers did not compensate for the delay of the speed of sound such that they systematically favored the visual cue occurring earlier as a function of viewing distance. When observers judged simple visual stimuli in motion relative to the same sound burst, the distance effect occurred as a function of the visual clarity of the ball arriving. In the baseball setting, using a large screen projection of baserunner, a diminished distance effect occurred due to the additional visual cues. In summary, observers generally do not account for the delay of sound due to distance.
ContributorsKrynen, R. Chandler (Author) / McBeath, Michael (Thesis advisor) / Homa, Donald (Committee member) / Gray, Robert (Committee member) / Arizona State University (Publisher)
Created2017