Matching Items (5)
Filtering by

Clear all filters

153549-Thumbnail Image.png
Description
An emerging literature on the relation between memory and importance has shown that people are able to selectively remember information that is more, relative to less important. Researchers in this field have operationalized importance by assigning value to the different information that participants are asked to study and remember. In

An emerging literature on the relation between memory and importance has shown that people are able to selectively remember information that is more, relative to less important. Researchers in this field have operationalized importance by assigning value to the different information that participants are asked to study and remember. In the present investigation I developed two experiments, using a slightly altered value-directed-remembering (VDR) paradigm, to investigate whether and how value modifies the dynamics of memory organization and search. Moreover, I asked participants to perform a surprise final free recall task in order to examine the effects of value in the recall dynamics of final free recall. In Experiment 1, I compared the recall dynamics of delayed and final free recall between a control and a value condition, in the latter of which numbers appeared next to words, in random order, denoting the value of remembering each word during recall. In Experiment 2, I manipulated the order of presentation of the values by adding an ascending and a descending condition where values were presented in either an ascending or a descending order, respectively. Overall, my results indicated that value affected several measures of delayed and final free recall, without, in most cases, taking away the serial position effects on those same measures.
ContributorsStefanidi, Aikaterini (Author) / Brewer, Gene A. (Thesis advisor) / Glenberg, Arthur (Committee member) / Goldinger, Stephen (Committee member) / Arizona State University (Publisher)
Created2015
150150-Thumbnail Image.png
Description
Learning and transfer were investigated for a categorical structure in which relevant stimulus information could be mapped without loss from one modality to another. The category space was composed of three non-overlapping, linearly-separable categories. Each stimulus was composed of a sequence of on-off events that varied in duration and number

Learning and transfer were investigated for a categorical structure in which relevant stimulus information could be mapped without loss from one modality to another. The category space was composed of three non-overlapping, linearly-separable categories. Each stimulus was composed of a sequence of on-off events that varied in duration and number of sub-events (complexity). Categories were learned visually, haptically, or auditorily, and transferred to the same or an alternate modality. The transfer set contained old, new, and prototype stimuli, and subjects made both classification and recognition judgments. The results showed an early learning advantage in the visual modality, with transfer performance varying among the conditions in both classification and recognition. In general, classification accuracy was highest for the category prototype, with false recognition of the category prototype higher in the cross-modality conditions. The results are discussed in terms of current theories in modality transfer, and shed preliminary light on categorical transfer of temporal stimuli.
ContributorsFerguson, Ryan (Author) / Homa, Donald (Thesis advisor) / Goldinger, Stephen (Committee member) / Glenberg, Arthur (Committee member) / Arizona State University (Publisher)
Created2011
154110-Thumbnail Image.png
Description
Individual differences in working memory capacity partly arise from variability in attention control, a process influenced by negative emotional content. Thus, individual differences in working memory capacity should be predictive of differences in the ability to regulate attention in emotional contexts. To address this hypothesis, a complex-span working memory task

Individual differences in working memory capacity partly arise from variability in attention control, a process influenced by negative emotional content. Thus, individual differences in working memory capacity should be predictive of differences in the ability to regulate attention in emotional contexts. To address this hypothesis, a complex-span working memory task (symmetry span) was modified so that negative arousing images or neutral images subtended the background during the encoding phase. Across three experiments, negative arousing images impaired working memory encoding relative to neutral images, resulting in impoverished symmetry span scores. Additionally, in Experiment 3, both negative and arousing images captured attention and led to increased hit rates in a subsequent recognition task. Contrary to the primary hypothesis, individual differences in working memory capacity derived from three complex span tasks failed to moderate the effect of negative arousing images on working memory encoding across two large scale studies. Implications for theories of working memory and attention control in emotional contexts will be discussed.
ContributorsWingert, Kimberly Marie (Author) / Brewer, Gene A. (Thesis advisor) / Amazeen, Eric (Committee member) / Killeen, Peter (Committee member) / Goldinger, Stephen (Committee member) / Arizona State University (Publisher)
Created2015
157183-Thumbnail Image.png
Description
In the daily life of an individual problems of varying difficulty are encountered.

Each problem may include a different number of constraints placed upon the problem

solver. One type of problem commonly used in research are multiply-constrained

problems, such as the compound remote associates. Since their development they have

been related to creativity and

In the daily life of an individual problems of varying difficulty are encountered.

Each problem may include a different number of constraints placed upon the problem

solver. One type of problem commonly used in research are multiply-constrained

problems, such as the compound remote associates. Since their development they have

been related to creativity and insight. Moreover, research has been conducted to

determine the cognitive abilities underlying problem solving abilities. We sought to fully

evaluate the range of cognitive abilities (i.e., working memory, episodic and semantic

memory, and fluid and crystallized intelligence) linked to multiply-constrained problem

solving. Additionally, we sought to determine whether problem solving ability and

strategies (analytical or insightful) were task specific or domain general through the use

of novel problem solving tasks (TriBond and Location Bond). Results indicated that

multiply-constrained problem solving abilities were domain general, solutions derived

through insightful strategies were more often correct than analytical, and crystallized

intelligence was the only cognitive ability that provided unique predictive value.
ContributorsEllis, Derek M (Author) / Brewer, Gene A. (Thesis advisor) / Homa, Donald (Committee member) / Goldinger, Stephen (Committee member) / Arizona State University (Publisher)
Created2019
171807-Thumbnail Image.png
Description
Statistical word learning (SWL) has been proposed and tested as a powerful mechanism for word learning under referential ambiguity. Learners are adept at resolving word-referent ambiguity by calculating the co-occurrences between words and referents across ambiguous scenes. Despite the generalizability of such capacity, it is less clear which underlying factors

Statistical word learning (SWL) has been proposed and tested as a powerful mechanism for word learning under referential ambiguity. Learners are adept at resolving word-referent ambiguity by calculating the co-occurrences between words and referents across ambiguous scenes. Despite the generalizability of such capacity, it is less clear which underlying factors may play a role in SWL, such as learners’ language experience and individual differences of working memory. The current study therefore asked two questions: 1) How do learners of different language experience (monolinguals and bilinguals) approach SWL of different mapping types–when each referent has one name (1:1 mapping) or two names (2:1 mapping)? and 2) How do working memory capacities (spatial and phonological) play a role in SWL by mapping type? In this pre-registered study (OSF: https://osf.io/mte8s/), 69 English monolinguals and 88 bilinguals completed two SWL tasks (1:1 and 2:1 mapping), a symmetry span task indexing spatial working memory, and a listening span task indexing phonological working memory. Results showed no differences between monolinguals and bilinguals in SWL of both mapping types. However, spatial and phonological working memory positively predicted SWL regardless of language experience, but only in 1:1 mapping. The findings show a dissociation of working memory’s role in SWL of different mapping types. The study proposes a novel insight into a theoretical debate underlying statistical learning mechanisms: learners may adopt more explicit processes (i.e. hypothesis-testing) during 1:1 mapping but implicit processes (i.e. associative learning) during 2:1 mapping. Future studies can locate memory-related brain areas during SWL to test out the proposal.
ContributorsLi, Ye (Author) / Benitez, Viridiana (Thesis advisor) / Goldinger, Stephen (Committee member) / Brewer, Gene (Committee member) / Arizona State University (Publisher)
Created2022