Matching Items (7)
Filtering by

Clear all filters

156064-Thumbnail Image.png
Description
Poor executive cognitive functioning (ECF) is associated with a variety of alcohol-related problems, however, it is not known whether poor ECF precedes the onset of heavy drinking. Establishing the temporal precedence of poor ECF may have implications for our understanding of the development of Alcohol Use Disorder (AUD). The present

Poor executive cognitive functioning (ECF) is associated with a variety of alcohol-related problems, however, it is not known whether poor ECF precedes the onset of heavy drinking. Establishing the temporal precedence of poor ECF may have implications for our understanding of the development of Alcohol Use Disorder (AUD). The present study tests associations between early-adolescent ECF and young-adult risky drinking and alcohol-related problems in a prospective study of youth followed to young adulthood. Participants completed three ECF tasks at ages 11-14 and reported on their risky drinking and alcohol-related problems at ages 18-24. A latent ECF factor was created to determine whether early-adolescent ECF was associated with drinking outcomes after controlling for relevant covariates (e.g., age, sex, family history of AUD). Early-adolescent ECF, as measured by a latent factor, was unrelated to young-adult alcohol misuse and alcohol-related problems. However, sensitivity analyses revealed that an individual ECF task tapping response inhibition predicted young-adult peak drinks in a day. Present findings suggest that ECF is not a robust predictor of risky drinking or alcohol-related problems, and that this relation may be specific to the ECF component of response inhibition.
ContributorsJones, Connor Brian (Author) / Meier, Madeline (Thesis advisor) / Chassin, Laurie (Committee member) / McClure, Samuel (Committee member) / Arizona State University (Publisher)
Created2017
156607-Thumbnail Image.png
Description
Properly deciding to engage in or to withhold an action is a critical ability for goal-oriented movement control. Such decision may be driven by expected value from the choice of action but associating physical effort may discount such value. A novel anticipatory stopping task was developed to investigate effort discounted

Properly deciding to engage in or to withhold an action is a critical ability for goal-oriented movement control. Such decision may be driven by expected value from the choice of action but associating physical effort may discount such value. A novel anticipatory stopping task was developed to investigate effort discounted decision process potentially present in proactive inhibitory control. Subjects performed or abstained from target reach if they believed it was a Go or Stop trial respectively. Reward was awarded to a reach, correctly timed to hit a target at the same time as the moving bar in Go trials. During the Stop trials, correctly judging to not engage in a reach from the color of the moving bar that linked to the bar’s probability of stopping before the target resulted in gaining a reward. Resistive force field incurred additional physical effort for choosing to reach. Introducing effort expectedly decreased the tendency to respond at trials with higher stop probability. Surprisingly, tendency to respond increased and corresponding reaction time decreased in the trials with lower stop probability. Such asymmetric effect suggests that the value of context ineffective response is discounted, and the value of context effective response is flexibly enhanced by its associated effort cost to drive decision-process in goal-oriented manner. Medial frontal event related potential (ERP) locked to the onset of moving bar appearance reflected such effort discounted decision process. Theta band observed in Stop trials accounted for evaluation of effort and context possibly reinforcing such decision-making.
ContributorsTsuchiya, Toshiki (Author) / Santello, Marco (Thesis advisor) / Fine, Justin (Committee member) / McClure, Samuel (Committee member) / Arizona State University (Publisher)
Created2018
135211-Thumbnail Image.png
Description
We hypothesized that recurrent exposure to a temporal discounting task would habitize participants, so that they become insensitive to framing effects. Temporal discounting is a behavioral trend which describes how people discount the value of a reward dependent on the time until receipt. Participants completed a temporal discounting task weekly

We hypothesized that recurrent exposure to a temporal discounting task would habitize participants, so that they become insensitive to framing effects. Temporal discounting is a behavioral trend which describes how people discount the value of a reward dependent on the time until receipt. Participants completed a temporal discounting task weekly for five weeks, to promote formation of a habitual decision strategy. Concomitant with this, we expected that people would shift their decision process from a deliberate, goal-oriented approach that is sensitive to changes in reward outcomes and environmental context, to a simplified, automatic approach that minimizes cognitive effort. We expected that this shift in decision strategy would be evident in a reduced influence of contextual effects on choice outcomes. We tested this hypothesis by leveraging two framing effects \u2014 the date/delay effect and the decimal effect. Consistent with our hypothesis, we find that the date/delay effect is significant on week 1, shows significant changes in week 1 to week 5, and is no longer significant on week 5. The results for the decimal effects were not significant. We discuss these results with respect to the cognitive processes that underlie temporal discounting and self-control.
ContributorsSt Amand, Jesse Dean (Author) / McClure, Samuel (Thesis director) / Sanabria, Federico (Committee member) / School of Molecular Sciences (Contributor) / Department of Physics (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
133734-Thumbnail Image.png
Description
Prior expectations can bias evaluative judgments of sensory information. We show that information about a performer's status can bias the evaluation of musical stimuli, reflected by differential activity of the ventromedial prefrontal cortex (vmPFC). Moreover, we demonstrate that decreased susceptibility to this confirmation bias is (a) accompanied by the recruitment

Prior expectations can bias evaluative judgments of sensory information. We show that information about a performer's status can bias the evaluation of musical stimuli, reflected by differential activity of the ventromedial prefrontal cortex (vmPFC). Moreover, we demonstrate that decreased susceptibility to this confirmation bias is (a) accompanied by the recruitment of and (b) correlated with the white-matter structure of the executive control network, particularly related to the dorsolateral prefrontal cortex (dlPFC). By using long-duration musical stimuli, we were able to track the initial biasing, subsequent perception, and ultimate evaluation of the stimuli, examining the full evolution of these biases over time. Our findings confirm the persistence of confirmation bias effects even when ample opportunity exists to gather information about true stimulus quality, and underline the importance of executive control in reducing bias.
ContributorsAydogan, Goekhan (Co-author, Committee member) / Flaig, Nicole (Co-author) / Larg, Edward W. (Co-author) / Margulis, Elizabeth Hellmuth (Co-author) / McClure, Samuel (Co-author, Thesis director) / Nagishetty Ravi, Srekar Krishna (Co-author) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
171788-Thumbnail Image.png
Description
The ability to preferentially encode and later retrieve valuable information amidst a plethora of miscellaneous information is an essential aspect of human memory. Several hypotheses have been suggested to explain the enhanced ability to successfully encode high value items. These include the hypothesis that the prefrontal executive control processes are

The ability to preferentially encode and later retrieve valuable information amidst a plethora of miscellaneous information is an essential aspect of human memory. Several hypotheses have been suggested to explain the enhanced ability to successfully encode high value items. These include the hypothesis that the prefrontal executive control processes are engaged for valuable information, producing elaborative rehearsal strategy. Another hypothesis is that greater attentional resources are allocated to higher value items via the reward driven mid-brain dopamine systems interacting with hippocampal and cortical areas to produce enhanced memory. To further understand the neural mechanisms of value on memory, electroencephalogram data under a value-directed remembering paradigm (VDR) was analyzed for oscillatory activity. During the task, participants encoded words assigned a different point value with the instruction to maximize the point value of recognized words during test. To analyze frequency activity during encoding, conditions of subsequent memory as subjective responses of either recollection (i.e., “remember”) and familiarity (i.e., “know”) were assessed. A possible way to observe the allocation of attention resources in the brain are alpha oscillations (8-15 Hz) which are thought to underlie this process. Participants demonstrated superior memory for high versus low value point items. Following the hypothesis that there is a greater recruitment of attentional resources for high value information, alpha oscillatory power in the occipital/temporal cortex displayed significantly more desynchronization for high value compared to low value conditions during encoding. As well, successful retrieval compared with unsuccessful retrieval and subsequent “remember” or “know” conditions resulted in a qualitatively different, more sustained desynchronization of alpha and other unanticipated frequency band oscillations during encoding that are discussed. Taken together, these findings support previous research for alpha-band desynchronization during encoding items of value into memory and potentially open paths to decouple value and memory driven processes.
ContributorsWilliams, Cole (Author) / Brewer, Gene (Thesis advisor) / McClure, Samuel (Committee member) / Blais, Chris (Committee member) / Arizona State University (Publisher)
Created2022
156674-Thumbnail Image.png
Description
Working memory capacity and fluid intelligence are important predictors of performance in educational settings. Thus, understanding the processes underlying the relation between working memory capacity and fluid intelligence is important. Three large scale individual differences experiments were conducted to determine the mechanisms underlying the relation between working memory capacity and

Working memory capacity and fluid intelligence are important predictors of performance in educational settings. Thus, understanding the processes underlying the relation between working memory capacity and fluid intelligence is important. Three large scale individual differences experiments were conducted to determine the mechanisms underlying the relation between working memory capacity and fluid intelligence. Experiments 1 and 2 were designed to assess whether individual differences in strategic behavior contribute to the variance shared between working memory capacity and fluid intelligence. In Experiment 3, competing theories for describing the underlying processes (cognitive vs. strategy) were evaluated in a comprehensive examination of potential underlying mechanisms. These data help inform existing theories about the mechanisms underlying the relation between WMC and gF. However, these data also indicate that the current theoretical model of the shared variance between WMC and gF would need to be revised to account for the data in Experiment 3. Possible sources of misfit are considered in the discussion along with a consideration of the theoretical implications of observing those relations in the Experiment 3 data.
ContributorsWingert, Kimberly Marie (Author) / Brewer, Gene A. (Thesis advisor) / McNamara, Danielle (Thesis advisor) / McClure, Samuel (Committee member) / Redick, Thomas (Committee member) / Arizona State University (Publisher)
Created2018
171684-Thumbnail Image.png
Description
Dopamine neurons are essential for several aspects of cognition. Several decades of Parkinson’s Disease (PD) research have revealed that the deterioration of these neurons is associated with a wide range of cognitive deficits such as attention, motor coordination, and memory. The diversity of these deficits is a demonstration of the

Dopamine neurons are essential for several aspects of cognition. Several decades of Parkinson’s Disease (PD) research have revealed that the deterioration of these neurons is associated with a wide range of cognitive deficits such as attention, motor coordination, and memory. The diversity of these deficits is a demonstration of the structural and functional heterogeneity within the dopaminergic system; projections from the substantia nigra and the ventral tegmental area to striatum have targets in the frontal and medial temporal cortices. It is known that prospective memory is negatively affected by PD, but whether the deficits originate from pathways that support attention, retrospective memory, working memory, and/or motor control has not yet been determined. For the current study, the goal is to estimate the structural integrity of these pathways by using diffusion-imaging analysis to then correlate these estimates with prospective memory performance within a standard event-based task. Two participant data sets were reported in the current study and compared with the global and target fractional anisotropy as well as seed connectivity. All the results reported here are preliminary.
ContributorsTerry, Jade (Author) / Brewer, Gene (Thesis advisor) / Ofori, Edward (Thesis advisor) / McClure, Samuel (Committee member) / Arizona State University (Publisher)
Created2022