Matching Items (21)
Filtering by

Clear all filters

151978-Thumbnail Image.png
Description
The current paper presents two studies that examine how asymmetries during interpersonal coordination are compensated for. It was predicted that destabilizing effects of asymmetries are stabilized through the recruitment and suppression of motor degrees-of-freedom (df). Experiment 1 examined this effect by having participants coordinate line movements of different orientations. Greater

The current paper presents two studies that examine how asymmetries during interpersonal coordination are compensated for. It was predicted that destabilizing effects of asymmetries are stabilized through the recruitment and suppression of motor degrees-of-freedom (df). Experiment 1 examined this effect by having participants coordinate line movements of different orientations. Greater differences in asymmetries between participants yielded greater spatial deviation, resulting in the recruitment of df. Experiment 2 examined whether coordination of movements asymmetrical in shape (circle and line) yield simultaneous recruitment and suppression of df. This experiment also tested whether the initial stability of the performed movement alters the amount of change in df. Results showed that changes in df were exhibited as circles decreasing in circularity and lines increasing in circularity. Further, more changes in df were found circular (suppression) compared to line (recruitment) movements.
ContributorsFine, Justin (Author) / Amazeen, Eric L (Thesis advisor) / Amazeen, Polemnia G (Committee member) / Brewer, Gene A. (Committee member) / Arizona State University (Publisher)
Created2013
152678-Thumbnail Image.png
Description
Recognition memory was investigated for naturalistic dynamic scenes. Although visual recognition for static objects and scenes has been investigated previously and found to be extremely robust in terms of fidelity and retention, visual recognition for dynamic scenes has received much less attention. In four experiments, participants view a number of

Recognition memory was investigated for naturalistic dynamic scenes. Although visual recognition for static objects and scenes has been investigated previously and found to be extremely robust in terms of fidelity and retention, visual recognition for dynamic scenes has received much less attention. In four experiments, participants view a number of clips from novel films and are then tasked to complete a recognition test containing frames from the previously viewed films and difficult foil frames. Recognition performance is good when foils are taken from other parts of the same film (Experiment 1), but degrades greatly when foils are taken from unseen gaps from within the viewed footage (Experiments 3 and 4). Removing all non-target frames had a serious effect on recognition performance (Experiment 2). Across all experiments, presenting the films as a random series of clips seemed to have no effect on recognition performance. Patterns of accuracy and response latency in Experiments 3 and 4 appear to be a result of a serial-search process. It is concluded that visual representations of dynamic scenes may be stored as units of events, and participant's old
ew judgments of individual frames were better characterized by a cued-recall paradigm than traditional recognition judgments.
ContributorsFerguson, Ryan (Author) / Homa, Donald (Thesis advisor) / Goldinger, Stephen (Committee member) / Glenberg, Arthur (Committee member) / Brewer, Gene (Committee member) / Arizona State University (Publisher)
Created2014
152920-Thumbnail Image.png
Description
Categories are often defined by rules regarding their features. These rules may be intensely complex yet, despite the complexity of these rules, we are often able to learn them with sufficient practice. A possible explanation for how we arrive at consistent category judgments despite these difficulties would be that we

Categories are often defined by rules regarding their features. These rules may be intensely complex yet, despite the complexity of these rules, we are often able to learn them with sufficient practice. A possible explanation for how we arrive at consistent category judgments despite these difficulties would be that we may define these complex categories such as chairs, tables, or stairs by understanding the simpler rules defined by potential interactions with these objects. This concept, called grounding, allows for the learning and transfer of complex categorization rules if said rules are capable of being expressed in a more simple fashion by virtue of meaningful physical interactions. The present experiment tested this hypothesis by having participants engage in either a Rule Based (RB) or Information Integration (II) categorization task with instructions to engage with the stimuli in either a non-interactive or interactive fashion. If participants were capable of grounding the categories, which were defined in the II task with a complex visual rule, to a simpler interactive rule, then participants with interactive instructions should outperform participants with non-interactive instructions. Results indicated that physical interaction with stimuli had a marginally beneficial effect on category learning, but this effect seemed most prevalent in participants were engaged in an II task.
ContributorsCrawford, Thomas (Author) / Homa, Donald (Thesis advisor) / Glenberg, Arthur (Committee member) / McBeath, Michael (Committee member) / Brewer, Gene (Committee member) / Arizona State University (Publisher)
Created2014
153437-Thumbnail Image.png
Description
A converging operations approach using response time distribution modeling was adopted to better characterize the cognitive control dynamics underlying ongoing task cost and cue detection in event based prospective memory (PM). In Experiment 1, individual differences analyses revealed that working memory capacity uniquely predicted nonfocal cue detection, while proactive control

A converging operations approach using response time distribution modeling was adopted to better characterize the cognitive control dynamics underlying ongoing task cost and cue detection in event based prospective memory (PM). In Experiment 1, individual differences analyses revealed that working memory capacity uniquely predicted nonfocal cue detection, while proactive control and inhibition predicted variation in ongoing task cost of the ex-Gaussian parameter associated with continuous monitoring strategies (mu). In Experiments 2A and 2B, quasi-experimental techniques aimed at identifying the role of proactive control abilities in PM monitoring and cue detection suggested that low ability participants may have PM deficits during demanding tasks due to inefficient monitoring strategies, but that emphasizing importance of the intention can increase reliance on more efficacious monitoring strategies that boosts performance (Experiment 2A). Furthermore, high proactive control ability participants are able to efficiently regulate their monitoring strategies under scenarios that do not require costly monitoring for successful cue detection (Experiment 2B). In Experiments 3A and 3B, it was found that proactive control benefited cue detection in interference-rich environments, but the neural correlates of cue detection or intention execution did not differ when engaged in proactive versus reactive control. The results from the current set of studies highlight the importance of response time distribution modeling in understanding PM cost. Additionally, these results have important implications for extant theories of PM and have considerable applied ramifications concerning the cognitive control processes that should be targeted to improve PM abilities.
ContributorsBall, Brett Hunter (Author) / Brewer, Gene A. (Thesis advisor) / Goldinger, Stephen (Committee member) / Glenberg, Arthur (Committee member) / Amazeen, Eric (Committee member) / Arizona State University (Publisher)
Created2015
153549-Thumbnail Image.png
Description
An emerging literature on the relation between memory and importance has shown that people are able to selectively remember information that is more, relative to less important. Researchers in this field have operationalized importance by assigning value to the different information that participants are asked to study and remember. In

An emerging literature on the relation between memory and importance has shown that people are able to selectively remember information that is more, relative to less important. Researchers in this field have operationalized importance by assigning value to the different information that participants are asked to study and remember. In the present investigation I developed two experiments, using a slightly altered value-directed-remembering (VDR) paradigm, to investigate whether and how value modifies the dynamics of memory organization and search. Moreover, I asked participants to perform a surprise final free recall task in order to examine the effects of value in the recall dynamics of final free recall. In Experiment 1, I compared the recall dynamics of delayed and final free recall between a control and a value condition, in the latter of which numbers appeared next to words, in random order, denoting the value of remembering each word during recall. In Experiment 2, I manipulated the order of presentation of the values by adding an ascending and a descending condition where values were presented in either an ascending or a descending order, respectively. Overall, my results indicated that value affected several measures of delayed and final free recall, without, in most cases, taking away the serial position effects on those same measures.
ContributorsStefanidi, Aikaterini (Author) / Brewer, Gene A. (Thesis advisor) / Glenberg, Arthur (Committee member) / Goldinger, Stephen (Committee member) / Arizona State University (Publisher)
Created2015
153222-Thumbnail Image.png
Description
Writing is an intricate cognitive and social process that involves the production of texts for the purpose of conveying meaning to others. The importance of lower level cognitive skills and language knowledge during this text production process has been well documented in the literature. However, the role of higher level

Writing is an intricate cognitive and social process that involves the production of texts for the purpose of conveying meaning to others. The importance of lower level cognitive skills and language knowledge during this text production process has been well documented in the literature. However, the role of higher level skills (e.g., metacognition, strategy use, etc.) has been less strongly emphasized. This thesis proposal examines higher level cognitive skills in the context of persuasive essay writing. Specifically, two published manuscripts are presented, which both examine the role of higher level skills in the context of writing. The first manuscript investigates the role of metacognition in the writing process by examining the accuracy and characteristics of students' self-assessments of their essays. The second manuscript takes an individual differences approach and examines whether the higher level cognitive skills commonly associated with reading comprehension are also related to performance on writing tasks. Taken together, these manuscripts point towards a strong role of higher level skills in the writing process and provide a strong foundation on which to develop future research and educational interventions.
ContributorsAllen, Laura K (Author) / McNamara, Danielle S. (Thesis advisor) / Connor, Carol (Committee member) / Glenberg, Arthur (Committee member) / Arizona State University (Publisher)
Created2014
150150-Thumbnail Image.png
Description
Learning and transfer were investigated for a categorical structure in which relevant stimulus information could be mapped without loss from one modality to another. The category space was composed of three non-overlapping, linearly-separable categories. Each stimulus was composed of a sequence of on-off events that varied in duration and number

Learning and transfer were investigated for a categorical structure in which relevant stimulus information could be mapped without loss from one modality to another. The category space was composed of three non-overlapping, linearly-separable categories. Each stimulus was composed of a sequence of on-off events that varied in duration and number of sub-events (complexity). Categories were learned visually, haptically, or auditorily, and transferred to the same or an alternate modality. The transfer set contained old, new, and prototype stimuli, and subjects made both classification and recognition judgments. The results showed an early learning advantage in the visual modality, with transfer performance varying among the conditions in both classification and recognition. In general, classification accuracy was highest for the category prototype, with false recognition of the category prototype higher in the cross-modality conditions. The results are discussed in terms of current theories in modality transfer, and shed preliminary light on categorical transfer of temporal stimuli.
ContributorsFerguson, Ryan (Author) / Homa, Donald (Thesis advisor) / Goldinger, Stephen (Committee member) / Glenberg, Arthur (Committee member) / Arizona State University (Publisher)
Created2011
150044-Thumbnail Image.png
Description
The purpose of this study was to investigate the effect of partial exemplar experience on category formation and use. Participants had either complete or limited access to the three dimensions that defined categories by dimensions within different modalities. The concept of "crucial dimension" was introduced and the role it plays

The purpose of this study was to investigate the effect of partial exemplar experience on category formation and use. Participants had either complete or limited access to the three dimensions that defined categories by dimensions within different modalities. The concept of "crucial dimension" was introduced and the role it plays in category definition was explained. It was hypothesized that the effects of partial experience are not explained by a shifting of attention between dimensions (Taylor & Ross, 2009) but rather by an increased reliance on prototypical values used to fill in missing information during incomplete experiences. Results indicated that participants (1) do not fill in missing information with prototypical values, (2) integrate information less efficiently between different modalities than within a single modality, and (3) have difficulty learning only when partial experience prevents access to diagnostic information.
ContributorsCrawford, Thomas (Author) / Homa, Donald (Thesis advisor) / Mcbeath, Micheal (Committee member) / Glenberg, Arthur (Committee member) / Arizona State University (Publisher)
Created2011
156081-Thumbnail Image.png
Description
Auditory scene analysis (ASA) is the process through which listeners parse and organize their acoustic environment into relevant auditory objects. ASA functions by exploiting natural regularities in the structure of auditory information. The current study investigates spectral envelope and its contribution to the perception of changes in pitch and loudness.

Auditory scene analysis (ASA) is the process through which listeners parse and organize their acoustic environment into relevant auditory objects. ASA functions by exploiting natural regularities in the structure of auditory information. The current study investigates spectral envelope and its contribution to the perception of changes in pitch and loudness. Experiment 1 constructs a perceptual continuum of twelve f0- and intensity-matched vowel phonemes (i.e. a pure timbre manipulation) and reveals spectral envelope as a primary organizational dimension. The extremes of this dimension are i (as in “bee”) and Ʌ (“bun”). Experiment 2 measures the strength of the relationship between produced f0 and the previously observed phonetic-pitch continuum at three different levels of phonemic constraint. Scat performances and, to a lesser extent, recorded interviews were found to exhibit changes in accordance with the natural regularity; specifically, f0 changes were correlated with the phoneme pitch-height continuum. The more constrained case of lyrical singing did not exhibit the natural regularity. Experiment 3 investigates participant ratings of pitch and loudness as stimuli vary in f0, intensity, and the phonetic-pitch continuum. Psychophysical functions derived from the results reveal that moving from i to Ʌ is equivalent to a .38 semitone decrease in f0 and a .75 dB decrease in intensity. Experiment 4 examines the potentially functional aspect of the pitch, loudness, and spectral envelope relationship. Detection thresholds of stimuli in which all three dimensions change congruently (f0 increase, intensity increase, Ʌ to i) or incongruently (no f0 change, intensity increase, i to Ʌ) are compared using an objective version of the method of limits. Congruent changes did not provide a detection benefit over incongruent changes; however, when the contribution of phoneme change was removed, congruent changes did offer a slight detection benefit, as in previous research. While this relationship does not offer a detection benefit at threshold, there is a natural regularity for humans to produce phonemes at higher f0s according to their relative position on the pitch height continuum. Likewise, humans have a bias to detect pitch and loudness changes in phoneme sweeps in accordance with the natural regularity.
ContributorsPatten, K. Jakob (Author) / Mcbeath, Michael K (Thesis advisor) / Amazeen, Eric L (Committee member) / Glenberg, Arthur W (Committee member) / Zhou, Yi (Committee member) / Arizona State University (Publisher)
Created2017
133028-Thumbnail Image.png
Description
Previous studies have found that the detection of near-threshold stimuli is decreased immediately before movement and throughout movement production. This has been suggested to occur through the use of the internal forward model processing an efferent copy of the motor command and creating a prediction that is used to cancel

Previous studies have found that the detection of near-threshold stimuli is decreased immediately before movement and throughout movement production. This has been suggested to occur through the use of the internal forward model processing an efferent copy of the motor command and creating a prediction that is used to cancel out the resulting sensory feedback. Currently, there are no published accounts of the perception of tactile signals for motor tasks and contexts related to the lips during both speech planning and production. In this study, we measured the responsiveness of the somatosensory system during speech planning using light electrical stimulation below the lower lip by comparing perception during mixed speaking and silent reading conditions. Participants were asked to judge whether a constant near-threshold electrical stimulation (subject-specific intensity, 85% detected at rest) was present during different time points relative to an initial visual cue. In the speaking condition, participants overtly produced target words shown on a computer monitor. In the reading condition, participants read the same target words silently to themselves without any movement or sound. We found that detection of the stimulus was attenuated during speaking conditions while remaining at a constant level close to the perceptual threshold throughout the silent reading condition. Perceptual modulation was most intense during speech production and showed some attenuation just prior to speech production during the planning period of speech. This demonstrates that there is a significant decrease in the responsiveness of the somatosensory system during speech production as well as milliseconds before speech is even produced which has implications for speech disorders such as stuttering and schizophrenia with pronounced deficits in the somatosensory system.
ContributorsMcguffin, Brianna Jean (Author) / Daliri, Ayoub (Thesis director) / Liss, Julie (Committee member) / Department of Psychology (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05