Matching Items (7)
Filtering by

Clear all filters

153213-Thumbnail Image.png
Description
The processing of large volumes of RDF data require an efficient storage and query processing engine that can scale well with the volume of data. The initial attempts to address this issue focused on optimizing native RDF stores as well as conventional relational databases management systems. But as the

The processing of large volumes of RDF data require an efficient storage and query processing engine that can scale well with the volume of data. The initial attempts to address this issue focused on optimizing native RDF stores as well as conventional relational databases management systems. But as the volume of RDF data grew to exponential proportions, the limitations of these systems became apparent and researchers began to focus on using big data analysis tools, most notably Hadoop, to process RDF data. Various studies and benchmarks that evaluate these tools for RDF data processing have been published. In the past two and half years, however, heavy users of big data systems, like Facebook, noted limitations with the query performance of these big data systems and began to develop new distributed query engines for big data that do not rely on map-reduce. Facebook's Presto is one such example.

This thesis deals with evaluating the performance of Presto in processing big RDF data against Apache Hive. A comparative analysis was also conducted against 4store, a native RDF store. To evaluate the performance Presto for big RDF data processing, a map-reduce program and a compiler, based on Flex and Bison, were implemented. The map-reduce program loads RDF data into HDFS while the compiler translates SPARQL queries into a subset of SQL that Presto (and Hive) can understand. The evaluation was done on four and eight node Linux clusters installed on Microsoft Windows Azure platform with RDF datasets of size 10, 20, and 30 million triples. The results of the experiment show that Presto has a much higher performance than Hive can be used to process big RDF data. The thesis also proposes an architecture based on Presto, Presto-RDF, that can be used to process big RDF data.
ContributorsMammo, Mulugeta (Author) / Bansal, Srividya (Thesis advisor) / Bansal, Ajay (Committee member) / Lindquist, Timothy (Committee member) / Arizona State University (Publisher)
Created2014
134185-Thumbnail Image.png
Description
37,461 automobile accident fatalities occured in the United States in 2016 ("Quick Facts 2016", 2017). Improving the safety of roads has traditionally been approached by governmental agencies including the National Highway Traffic Safety Administration and State Departments of Transporation. In past literature, automobile crash data is analyzed using time-series prediction

37,461 automobile accident fatalities occured in the United States in 2016 ("Quick Facts 2016", 2017). Improving the safety of roads has traditionally been approached by governmental agencies including the National Highway Traffic Safety Administration and State Departments of Transporation. In past literature, automobile crash data is analyzed using time-series prediction technicques to identify road segments and/or intersections likely to experience future crashes (Lord & Mannering, 2010). After dangerous zones have been identified road modifications can be implemented improving public safety. This project introduces a historical safety metric for evaluating the relative danger of roads in a road network. The historical safety metric can be used to update routing choices of individual drivers improving public safety by avoiding historically more dangerous routes. The metric is constructed using crash frequency, severity, location and traffic information. An analysis of publically-available crash and traffic data in Allgeheny County, Pennsylvania is used to generate the historical safety metric for a specific road network. Methods for evaluating routes based on the presented historical safety metric are included using the Mann Whitney U Test to evaluate the significance of routing decisions. The evaluation method presented requires routes have at least 20 crashes to be compared with significance testing. The safety of the road network is visualized using a heatmap to present distribution of the metric throughout Allgeheny County.
ContributorsGupta, Ariel Meron (Author) / Bansal, Ajay (Thesis director) / Sodemann, Angela (Committee member) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
154800-Thumbnail Image.png
Description
The concept of Linked Data is gaining widespread popularity and importance. The method of publishing and linking structured data on the web is called Linked Data. Emergence of Linked Data has made it possible to make sense of huge data, which is scattered all over the web, and link multiple

The concept of Linked Data is gaining widespread popularity and importance. The method of publishing and linking structured data on the web is called Linked Data. Emergence of Linked Data has made it possible to make sense of huge data, which is scattered all over the web, and link multiple heterogeneous sources. This leads to the challenge of maintaining the quality of Linked Data, i.e., ensuring outdated data is removed and new data is included. The focus of this thesis is devising strategies to effectively integrate data from multiple sources, publish it as Linked Data, and maintain the quality of Linked Data. The domain used in the study is online education. With so many online courses offered by Massive Open Online Courses (MOOC), it is becoming increasingly difficult for an end user to gauge which course best fits his/her needs.

Users are spoilt for choices. It would be very helpful for them to make a choice if there is a single place where they can visually compare the offerings of various MOOC providers for the course they are interested in. Previous work has been done in this area through the MOOCLink project that involved integrating data from Coursera, EdX, and Udacity and generation of linked data, i.e. Resource Description Framework (RDF) triples.

The research objective of this thesis is to determine a methodology by which the quality

of data available through the MOOCLink application is maintained, as there are lots of new courses being constantly added and old courses being removed by data providers. This thesis presents the integration of data from various MOOC providers and algorithms for incrementally updating linked data to maintain their quality and compare it against a naïve approach in order to constantly keep the users engaged with up-to-date data. A master threshold value was determined through experiments and analysis that quantifies one algorithm being better than the other in terms of time efficiency. An evaluation of the tool shows the effectiveness of the algorithms presented in this thesis.
ContributorsDhekne, Chinmay (Author) / Bansal, Srividya (Thesis advisor) / Bansal, Ajay (Committee member) / Sohoni, Sohum (Committee member) / Arizona State University (Publisher)
Created2016
154834-Thumbnail Image.png
Description
Semantic web is the web of data that provides a common framework and technologies for sharing and reusing data in various applications. In semantic web terminology, linked data is the term used to describe a method of exposing and connecting data on the web from different sources. The purpose of

Semantic web is the web of data that provides a common framework and technologies for sharing and reusing data in various applications. In semantic web terminology, linked data is the term used to describe a method of exposing and connecting data on the web from different sources. The purpose of linked data and semantic web is to publish data in an open and standard format and to link this data with existing data on the Linked Open Data Cloud. The goal of this thesis to come up with a semantic framework for integrating and publishing linked data on the web. Traditionally integrating data from multiple sources usually involves an Extract-Transform-Load (ETL) framework to generate datasets for analytics and visualization. The thesis proposes introducing a semantic component in the ETL framework to semi-automate the generation and publishing of linked data. In this thesis, various existing ETL tools and data integration techniques have been analyzed and deficiencies have been identified. This thesis proposes a set of requirements for the semantic ETL framework by conducting a manual process to integrate data from various sources such as weather, holidays, airports, flight arrival, departure and delays. The research questions that are addressed are: (i) to what extent can the integration, generation, and publishing of linked data to the cloud using a semantic ETL framework be automated; (ii) does use of semantic technologies produce a richer data model and integrated data. Details of the methodology, data collection, and application that uses the linked data generated are presented. Evaluation is done by comparing traditional data integration approach with semantic ETL approach in terms of effort involved in integration, data model generated and querying the data generated.
ContributorsPadki, Aparna (Author) / Bansal, Srividya (Thesis advisor) / Bansal, Ajay (Committee member) / Lindquist, Timothy (Committee member) / Arizona State University (Publisher)
Created2016
161510-Thumbnail Image.png
Description
The proliferation of semantic data in the form of RDF (Resource Description Framework) triples demands an efficient, scalable, and distributed storage along with a highly available and fault-tolerant parallel processing strategy. There are three open issues with distributed RDF data management systems that are not well addressed altogether in existing

The proliferation of semantic data in the form of RDF (Resource Description Framework) triples demands an efficient, scalable, and distributed storage along with a highly available and fault-tolerant parallel processing strategy. There are three open issues with distributed RDF data management systems that are not well addressed altogether in existing work. First is the querying efficiency, second is that solutions are optimized for certain types of query patterns and don’t necessarily work well for all types, and third is concerned with reducing pre-processing cost. Therefore, the rapid growth of RDF data raises the need for an efficient partitioning strategy over distributed data management systems to improve SPARQL (SPARQL Protocol and RDF Query Language) query performance regardless of its pattern shape with minimized pre-processing overhead. In this context, the first contribution of this work is a distributed RDF data partitioning schema called 3CStore that extends the existing VP (Vertical Partitioning) approach by using a subset of triples from the VP tables based on different join correlations. This approach speeds up queries at the cost of additional pre-processing overhead. To solve this, a relational partitioning schema called VPExp was developed by splitting predicates based on explicit type information of objects. This approach gains a significant query performance only for the specific type of query where the object is bound to a value for a particular predicate. To get efficient query performance on a wide range of query patterns, an improved solution is proposed by extending the existing Property Table approach to Subset-Property Table and combined with the VP approach. Further investigation on distributed RDF processing and querying systems based on typical use cases led to a novel relational partitioning schema called PTP (Property Table Partitioning) that further partitions the whole Property Table into the number of unique properties to minimize query input size and join operations during query evaluation. Finally, an RDF data management system based on the SPARQL-over-SQL approach called S3QLRDF is developed that generates the optimal query execution plan using statistics of PTP tables to provide efficient SPARQL query processing on a distributed system.
ContributorsHassan, P M Mahmudul Mahmudul (Author) / Bansal, Srividya (Thesis advisor) / Bansal, Ajay (Committee member) / Davulcu, Hasan (Committee member) / Sarwat Abdelghany Aly Elsayed, Mohamed (Committee member) / Arizona State University (Publisher)
Created2021
161629-Thumbnail Image.png
Description
One persisting problem in Massive Open Online Courses (MOOCs) is the issue of student dropout from these courses. The prediction of student dropout from MOOC courses can identify the factors responsible for such an event and it can further initiate intervention before such an event to increase student success in

One persisting problem in Massive Open Online Courses (MOOCs) is the issue of student dropout from these courses. The prediction of student dropout from MOOC courses can identify the factors responsible for such an event and it can further initiate intervention before such an event to increase student success in MOOC. There are different approaches and various features available for the prediction of student’s dropout in MOOC courses.In this research, the data derived from the self-paced math course ‘College Algebra and Problem Solving’ offered on the MOOC platform Open edX offered by Arizona State University (ASU) from 2016 to 2020 was considered. This research aims to predict the dropout of students from a MOOC course given a set of features engineered from the learning of students in a day. Machine Learning (ML) model used is Random Forest (RF) and this model is evaluated using the validation metrics like accuracy, precision, recall, F1-score, Area Under the Curve (AUC), Receiver Operating Characteristic (ROC) curve. The average rate of student learning progress was found to have more impact than other features. The model developed can predict the dropout or continuation of students on any given day in the MOOC course with an accuracy of 87.5%, AUC of 94.5%, precision of 88%, recall of 87.5%, and F1-score of 87.5% respectively. The contributing features and interactions were explained using Shapely values for the prediction of the model. The features engineered in this research are predictive of student dropout and could be used for similar courses to predict student dropout from the course. This model can also help in making interventions at a critical time to help students succeed in this MOOC course.
ContributorsDominic Ravichandran, Sheran Dass (Author) / Gary, Kevin (Thesis advisor) / Bansal, Ajay (Committee member) / Cunningham, James (Committee member) / Sannier, Adrian (Committee member) / Arizona State University (Publisher)
Created2021
131260-Thumbnail Image.png
Description
Machine learning is the process of training a computer with algorithms to learn from data and make informed predictions. In a world where large amounts of data are constantly collected, machine learning is an important tool to analyze this data to find patterns and learn useful information from it. Machine

Machine learning is the process of training a computer with algorithms to learn from data and make informed predictions. In a world where large amounts of data are constantly collected, machine learning is an important tool to analyze this data to find patterns and learn useful information from it. Machine learning applications expand to numerous fields; however, I chose to focus on machine learning with a business perspective for this thesis, specifically e-commerce.

The e-commerce market utilizes information to target customers and drive business. More and more online services have become available, allowing consumers to make purchases and interact with an online system. For example, Amazon is one of the largest Internet-based retail companies. As people shop through this website, Amazon gathers huge amounts of data on its customers from personal information to shopping history to viewing history. After purchasing a product, the customer may leave reviews and give a rating based on their experience. Performing analytics on all of this data can provide insights into making more informed business and marketing decisions that can lead to business growth and also improve the customer experience.
For this thesis, I have trained binary classification models on a publicly available product review dataset from Amazon to predict whether a review has a positive or negative sentiment. The sentiment analysis process includes analyzing and encoding the human language, then extracting the sentiment from the resulting values. In the business world, sentiment analysis provides value by revealing insights into customer opinions and their behaviors. In this thesis, I will explain how to perform a sentiment analysis and analyze several different machine learning models. The algorithms for which I compared the results are KNN, Logistic Regression, Decision Trees, Random Forest, Naïve Bayes, Linear Support Vector Machines, and Support Vector Machines with an RBF kernel.
ContributorsMadaan, Shreya (Author) / Meuth, Ryan (Thesis director) / Nakamura, Mutsumi (Committee member) / Computer Science and Engineering Program (Contributor, Contributor) / Dean, W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05