Matching Items (33)
Filtering by

Clear all filters

156796-Thumbnail Image.png
Description
Mobile devices have penetrated into every aspect of modern world. For one thing, they are becoming ubiquitous in daily life. For the other thing, they are storing more and more data, including sensitive data. Therefore, security and privacy of mobile devices are indispensable. This dissertation consists of five parts: two

Mobile devices have penetrated into every aspect of modern world. For one thing, they are becoming ubiquitous in daily life. For the other thing, they are storing more and more data, including sensitive data. Therefore, security and privacy of mobile devices are indispensable. This dissertation consists of five parts: two authentication schemes, two attacks, and one countermeasure related to security and privacy of mobile devices.

Specifically, in Chapter 1, I give an overview the challenges and existing solutions in these areas. In Chapter 2, a novel authentication scheme is presented, which is based on a user’s tapping or sliding on the touchscreen of a mobile device. In Chapter 3, I focus on mobile app fingerprinting and propose a method based on analyzing the power profiles of targeted mobile devices. In Chapter 4, I mainly explore a novel liveness detection method for face authentication on mobile devices. In Chapter 5, I investigate a novel keystroke inference attack on mobile devices based on user eye movements. In Chapter 6, a novel authentication scheme is proposed, based on detecting a user’s finger gesture through acoustic sensing. In Chapter 7, I discuss the future work.
ContributorsChen, Yimin (Author) / Zhang, Yanchao (Thesis advisor) / Zhang, Junshan (Committee member) / Reisslein, Martin (Committee member) / Ying, Lei (Committee member) / Arizona State University (Publisher)
Created2018
133397-Thumbnail Image.png
Description
Students learn in various ways \u2014 visualization, auditory, memorizing, or making analogies. Traditional lecturing in engineering courses and the learning styles of engineering students are inharmonious causing students to be at a disadvantage based on their learning style (Felder & Silverman, 1988). My study analyzes the traditional approach to learning

Students learn in various ways \u2014 visualization, auditory, memorizing, or making analogies. Traditional lecturing in engineering courses and the learning styles of engineering students are inharmonious causing students to be at a disadvantage based on their learning style (Felder & Silverman, 1988). My study analyzes the traditional approach to learning coding skills which is unnatural to engineering students with no previous exposure and examining if visual learning enhances introductory computer science education. Visual and text-based learning are evaluated to determine how students learn introductory coding skills and associated problem solving skills. My study was conducted to observe how the two types of learning aid the students in learning how to problem solve as well as how much knowledge can be obtained in a short period of time. The application used for visual learning was Scratch and Repl.it was used for text-based learning. Two exams were made to measure the progress made by each student. The topics covered by the exam were initialization, variable reassignment, output, if statements, if else statements, nested if statements, logical operators, arrays/lists, while loop, type casting, functions, object orientation, and sorting. Analysis of the data collected in the study allow us to observe whether the traditional method of teaching programming or block-based programming is more beneficial and in what topics of introductory computer science concepts.
ContributorsVidaure, Destiny Vanessa (Author) / Meuth, Ryan (Thesis director) / Yang, Yezhou (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
153686-Thumbnail Image.png
Description
A principal goal of this dissertation is to study wireless network design and optimization with the focus on two perspectives: 1) socially-aware mobile networking and computing; 2) security and privacy in wireless networking. Under this common theme, this dissertation can be broadly organized into three parts.

The first part studies socially-aware

A principal goal of this dissertation is to study wireless network design and optimization with the focus on two perspectives: 1) socially-aware mobile networking and computing; 2) security and privacy in wireless networking. Under this common theme, this dissertation can be broadly organized into three parts.

The first part studies socially-aware mobile networking and computing. First, it studies random access control and power control under a social group utility maximization (SGUM) framework. The socially-aware Nash equilibria (SNEs) are derived and analyzed. Then, it studies mobile crowdsensing under an incentive mechanism that exploits social trust assisted reciprocity (STAR). The efficacy of the STAR mechanism is thoroughly investigated. Next, it studies mobile users' data usage behaviors under the impact of social services and the wireless operator's pricing. Based on a two-stage Stackelberg game formulation, the user demand equilibrium (UDE) is analyzed in Stage II and the optimal pricing strategy is developed in Stage I. Last, it studies opportunistic cooperative networking under an optimal stopping framework with two-level decision-making. For both cases with or without dedicated relays, the optimal relaying strategies are derived and analyzed.

The second part studies radar sensor network coverage for physical security. First, it studies placement of bistatic radar (BR) sensor networks for barrier coverage. The optimality of line-based placement is analyzed, and the optimal placement of BRs on a line segment is characterized. Then, it studies the coverage of radar sensor networks that exploits the Doppler effect. Based on a Doppler coverage model, an efficient method is devised to characterize Doppler-covered regions and an algorithm is developed to find the minimum radar density required for Doppler coverage.

The third part studies cyber security and privacy in socially-aware networking and computing. First, it studies random access control, cooperative jamming, and spectrum access under an extended SGUM framework that incorporates negative social ties. The SNEs are derived and analyzed. Then, it studies pseudonym change for personalized location privacy under the SGUM framework. The SNEs are analyzed and an efficient algorithm is developed to find an SNE with desirable properties.
ContributorsGong, Xiaowen (Author) / Zhang, Junshan (Thesis advisor) / Cochran, Douglas (Committee member) / Ying, Lei (Committee member) / Zhang, Yanchao (Committee member) / Arizona State University (Publisher)
Created2015
155244-Thumbnail Image.png
Description
Mobile devices are penetrating everyday life. According to a recent Cisco report [10], the number of mobile connected devices such as smartphones, tablets, laptops, eReaders, and Machine-to-Machine (M2M) modules will hit 11.6 billion by 2021, exceeding the world's projected population at that time (7.8 billion). The rapid development of mobile

Mobile devices are penetrating everyday life. According to a recent Cisco report [10], the number of mobile connected devices such as smartphones, tablets, laptops, eReaders, and Machine-to-Machine (M2M) modules will hit 11.6 billion by 2021, exceeding the world's projected population at that time (7.8 billion). The rapid development of mobile devices has brought a number of emerging security and privacy issues in mobile computing. This dissertation aims to address a number of challenging security and privacy issues in mobile computing.

This dissertation makes fivefold contributions. The first and second parts study the security and privacy issues in Device-to-Device communications. Specifically, the first part develops a novel scheme to enable a new way of trust relationship called spatiotemporal matching in a privacy-preserving and efficient fashion. To enhance the secure communication among mobile users, the second part proposes a game-theoretical framework to stimulate the cooperative shared secret key generation among mobile users. The third and fourth parts investigate the security and privacy issues in mobile crowdsourcing. In particular, the third part presents a secure and privacy-preserving mobile crowdsourcing system which strikes a good balance among object security, user privacy, and system efficiency. The fourth part demonstrates a differentially private distributed stream monitoring system via mobile crowdsourcing. Finally, the fifth part proposes VISIBLE, a novel video-assisted keystroke inference framework that allows an attacker to infer a tablet user's typed inputs on the touchscreen by recording and analyzing the video of the tablet backside during the user's input process. Besides, some potential countermeasures to this attack are also discussed. This dissertation sheds the light on the state-of-the-art security and privacy issues in mobile computing.
ContributorsSun, Jingchao (Author) / Zhang, Yanchao (Thesis advisor) / Zhang, Junshan (Committee member) / Ying, Lei (Committee member) / Ahn, Gail-Joon (Committee member) / Arizona State University (Publisher)
Created2017
155401-Thumbnail Image.png
Description
This work presents a communication paradigm, using a context-aware mixed reality approach, for instructing human workers when collaborating with robots. The main objective of this approach is to utilize the physical work environment as a canvas to communicate task-related instructions and robot intentions in the form of visual cues. A

This work presents a communication paradigm, using a context-aware mixed reality approach, for instructing human workers when collaborating with robots. The main objective of this approach is to utilize the physical work environment as a canvas to communicate task-related instructions and robot intentions in the form of visual cues. A vision-based object tracking algorithm is used to precisely determine the pose and state of physical objects in and around the workspace. A projection mapping technique is used to overlay visual cues on tracked objects and the workspace. Simultaneous tracking and projection onto objects enables the system to provide just-in-time instructions for carrying out a procedural task. Additionally, the system can also inform and warn humans about the intentions of the robot and safety of the workspace. It was hypothesized that using this system for executing a human-robot collaborative task will improve the overall performance of the team and provide a positive experience to the human partner. To test this hypothesis, an experiment involving human subjects was conducted and the performance (both objective and subjective) of the presented system was compared with a conventional method based on printed instructions. It was found that projecting visual cues enabled human subjects to collaborate more effectively with the robot and resulted in higher efficiency in completing the task.
ContributorsKalpagam Ganesan, Ramsundar (Author) / Ben Amor, Hani (Thesis advisor) / Yang, Yezhou (Committee member) / Zhang, Yu (Committee member) / Arizona State University (Publisher)
Created2017
155809-Thumbnail Image.png
Description
Light field imaging is limited in its computational processing demands of high

sampling for both spatial and angular dimensions. Single-shot light field cameras

sacrifice spatial resolution to sample angular viewpoints, typically by multiplexing

incoming rays onto a 2D sensor array. While this resolution can be recovered using

compressive sensing, these iterative solutions are slow

Light field imaging is limited in its computational processing demands of high

sampling for both spatial and angular dimensions. Single-shot light field cameras

sacrifice spatial resolution to sample angular viewpoints, typically by multiplexing

incoming rays onto a 2D sensor array. While this resolution can be recovered using

compressive sensing, these iterative solutions are slow in processing a light field. We

present a deep learning approach using a new, two branch network architecture,

consisting jointly of an autoencoder and a 4D CNN, to recover a high resolution

4D light field from a single coded 2D image. This network decreases reconstruction

time significantly while achieving average PSNR values of 26-32 dB on a variety of

light fields. In particular, reconstruction time is decreased from 35 minutes to 6.7

minutes as compared to the dictionary method for equivalent visual quality. These

reconstructions are performed at small sampling/compression ratios as low as 8%,

allowing for cheaper coded light field cameras. We test our network reconstructions

on synthetic light fields, simulated coded measurements of real light fields captured

from a Lytro Illum camera, and real coded images from a custom CMOS diffractive

light field camera. The combination of compressive light field capture with deep

learning allows the potential for real-time light field video acquisition systems in the

future.
ContributorsGupta, Mayank (Author) / Turaga, Pavan (Thesis advisor) / Yang, Yezhou (Committee member) / Li, Baoxin (Committee member) / Arizona State University (Publisher)
Created2017
155604-Thumbnail Image.png
Description
In recent years, several methods have been proposed to encode sentences into fixed length continuous vectors called sentence representation or sentence embedding. With the recent advancements in various deep learning methods applied in Natural Language Processing (NLP), these representations play a crucial role in tasks such as named entity recognition,

In recent years, several methods have been proposed to encode sentences into fixed length continuous vectors called sentence representation or sentence embedding. With the recent advancements in various deep learning methods applied in Natural Language Processing (NLP), these representations play a crucial role in tasks such as named entity recognition, question answering and sentence classification.

Traditionally, sentence vector representations are learnt from its constituent word representations, also known as word embeddings. Various methods to learn the distributed representation (embedding) of words have been proposed using the notion of Distributional Semantics, i.e. “meaning of a word is characterized by the company it keeps”. However, principle of compositionality states that meaning of a sentence is a function of the meanings of words and also the way they are syntactically combined. In various recent methods for sentence representation, the syntactic information like dependency or relation between words have been largely ignored.

In this work, I have explored the effectiveness of sentence representations that are composed of the representation of both, its constituent words and the relations between the words in a sentence. The word and relation embeddings are learned based on their context. These general-purpose embeddings can also be used as off-the- shelf semantic and syntactic features for various NLP tasks. Similarity Evaluation tasks was performed on two datasets showing the usefulness of the learned word embeddings. Experiments were conducted on three different sentence classification tasks showing that our sentence representations outperform the original word-based sentence representations, when used with the state-of-the-art Neural Network architectures.
ContributorsRath, Trideep (Author) / Baral, Chitta (Thesis advisor) / Li, Baoxin (Committee member) / Yang, Yezhou (Committee member) / Arizona State University (Publisher)
Created2017
168293-Thumbnail Image.png
Description
Edge networks pose unique challenges for machine learning and network management. The primary objective of this dissertation is to study deep learning and adaptive control aspects of edge networks and to address some of the unique challenges therein. This dissertation explores four particular problems of interest at the intersection of

Edge networks pose unique challenges for machine learning and network management. The primary objective of this dissertation is to study deep learning and adaptive control aspects of edge networks and to address some of the unique challenges therein. This dissertation explores four particular problems of interest at the intersection of edge intelligence, deep learning and network management. The first problem explores the learning of generative models in edge learning setting. Since the learning tasks in similar environments share model similarity, it is plausible to leverage pre-trained generative models from other edge nodes. Appealing to optimal transport theory tailored towards Wasserstein-1 generative adversarial networks, this part aims to develop a framework which systematically optimizes the generative model learning performance using local data at the edge node while exploiting the adaptive coalescence of pre-trained generative models from other nodes. In the second part, a many-to-one wireless architecture for federated learning at the network edge, where multiple edge devices collaboratively train a model using local data, is considered. The unreliable nature of wireless connectivity, togetherwith the constraints in computing resources at edge devices, dictates that the local updates at edge devices should be carefully crafted and compressed to match the wireless communication resources available and should work in concert with the receiver. Therefore, a Stochastic Gradient Descent based bandlimited coordinate descent algorithm is designed for such settings. The third part explores the adaptive traffic engineering algorithms in a dynamic network environment. The ages of traffic measurements exhibit significant variation due to asynchronization and random communication delays between routers and controllers. Inspired by the software defined networking architecture, a controller-assisted distributed routing scheme with recursive link weight reconfigurations, accounting for the impact of measurement ages and routing instability, is devised. The final part focuses on developing a federated learning based framework for traffic reshaping of electric vehicle (EV) charging. The absence of private EV owner information and scattered EV charging data among charging stations motivates the utilization of a federated learning approach. Federated learning algorithms are devised to minimize peak EV charging demand both spatially and temporarily, while maximizing the charging station profit.
ContributorsDedeoglu, Mehmet (Author) / Zhang, Junshan (Thesis advisor) / Kosut, Oliver (Committee member) / Zhang, Yanchao (Committee member) / Fan, Deliang (Committee member) / Arizona State University (Publisher)
Created2021
168714-Thumbnail Image.png
Description
Deep neural network-based methods have been proved to achieve outstanding performance on object detection and classification tasks. Deep neural networks follow the ``deeper model with deeper confidence'' belief to gain a higher recognition accuracy. However, reducing these networks' computational costs remains a challenge, which impedes their deployment on embedded devices.

Deep neural network-based methods have been proved to achieve outstanding performance on object detection and classification tasks. Deep neural networks follow the ``deeper model with deeper confidence'' belief to gain a higher recognition accuracy. However, reducing these networks' computational costs remains a challenge, which impedes their deployment on embedded devices. For instance, the intersection management of Connected Autonomous Vehicles (CAVs) requires running computationally intensive object recognition algorithms on low-power traffic cameras. This dissertation aims to study the effect of a dynamic hardware and software approach to address this issue. Characteristics of real-world applications can facilitate this dynamic adjustment and reduce the computation. Specifically, this dissertation starts with a dynamic hardware approach that adjusts itself based on the toughness of input and extracts deeper features if needed. Next, an adaptive learning mechanism has been studied that use extracted feature from previous inputs to improve system performance. Finally, a system (ARGOS) was proposed and evaluated that can be run on embedded systems while maintaining the desired accuracy. This system adopts shallow features at inference time, but it can switch to deep features if the system desires a higher accuracy. To improve the performance, ARGOS distills the temporal knowledge from deep features to the shallow system. Moreover, ARGOS reduces the computation furthermore by focusing on regions of interest. The response time and mean average precision are adopted for the performance evaluation to evaluate the proposed ARGOS system.
ContributorsFarhadi, Mohammad (Author) / Yang, Yezhou (Thesis advisor) / Vrudhula, Sarma (Committee member) / Wu, Carole-Jean (Committee member) / Ren, Yi (Committee member) / Arizona State University (Publisher)
Created2022
187694-Thumbnail Image.png
Description
In the era of information explosion and multi-modal data, information retrieval (IR) and question answering (QA) systems have become essential in daily human activities. IR systems aim to find relevant information in response to user queries, while QA systems provide concise and accurate answers to user questions. IR and

In the era of information explosion and multi-modal data, information retrieval (IR) and question answering (QA) systems have become essential in daily human activities. IR systems aim to find relevant information in response to user queries, while QA systems provide concise and accurate answers to user questions. IR and QA are two of the most crucial challenges in the realm of Artificial Intelligence (AI), with wide-ranging real-world applications such as search engines and dialogue systems. This dissertation investigates and develops novel models and training objectives to enhance current retrieval systems in textual and multi-modal contexts. Moreover, it examines QA systems, emphasizing generalization and robustness, and creates new benchmarks to promote their progress. Neural retrievers have surfaced as a viable solution, capable of surpassing the constraints of traditional term-matching search algorithms. This dissertation presents Poly-DPR, an innovative multi-vector model architecture that manages test-query, and ReViz, a comprehensive multimodal model to tackle multi-modality queries. By utilizing IR-focused pretraining tasks and producing large-scale training data, the proposed methodology substantially improves the abilities of existing neural retrievers.Concurrently, this dissertation investigates the realm of QA systems, referred to as ``readers'', by performing an exhaustive analysis of current extractive and generative readers, which results in a reliable guidance for selecting readers for downstream applications. Additionally, an original reader (Two-in-One) is designed to effectively choose the pertinent passages and sentences from a pool of candidates for multi-hop reasoning. This dissertation also acknowledges the significance of logical reasoning in real-world applications and has developed a comprehensive testbed, LogiGLUE, to further the advancement of reasoning capabilities in QA systems.
ContributorsLuo, Man (Author) / Baral, Chitta (Thesis advisor) / Yang, Yezhou (Committee member) / Blanco, Eduardo (Committee member) / Chen, Danqi (Committee member) / Arizona State University (Publisher)
Created2023