Matching Items (5)
Filtering by

Clear all filters

152607-Thumbnail Image.png
Description
The Himalaya are the archetypal example of a continental collision belt, formed by the ongoing convergence between India and Eurasia. Boasting some of the highest and most rugged topography on Earth, there is currently no consensus on how climatic and tectonic processes have combined to shape its topographic evolution. The

The Himalaya are the archetypal example of a continental collision belt, formed by the ongoing convergence between India and Eurasia. Boasting some of the highest and most rugged topography on Earth, there is currently no consensus on how climatic and tectonic processes have combined to shape its topographic evolution. The Kingdom of Bhutan in the eastern Himalaya provides a unique opportunity to study the interconnections among Himalayan climate, topography, erosion, and tectonics. The eastern Himalaya are remarkably different from the rest of the orogen, most strikingly due to the presence of the Shillong Plateau to the south of the Himalayan rangefront. The tectonic structures associated with the Shillong Plateau have accommodated convergence between India and Eurasia and created a natural experiment to test the possible response of the Himalaya to a reduction in local shortening. In addition, the position and orientation of the plateau topography has intercepted moisture once bound for the Himalaya and created a natural experiment to test the possible response of the range to a reduction in rainfall. I focused this study around the gently rolling landscapes found in the middle of the otherwise extremely rugged Bhutan Himalaya, with the understanding that these landscapes likely record a recent change in the evolution of the range. I have used geochronometric, thermochronometric, and cosmogenic nuclide techniques, combined with thermal-kinematic and landscape evolution models to draw three primary conclusions. 1) The cooling histories of bedrock samples from the hinterland of the Bhutan Himalaya show a protracted decrease in erosion rate from the Middle Miocene toward the Pliocene. I have attributed this change to a reduction in shortening rates across the Himalayan mountain belt, due to increased accommodation of shortening across the Shillong Plateau. 2) The low-relief landscapes of Bhutan were likely created by backtilting and surface uplift produced by an active, blind, hinterland duplex. These landscapes were formed during surface uplift, which initiated ca. 1.5 Ma and has totaled 800 m. 3) Millennial-scale erosion rates are coupled with modern rainfall rates. Non-linear relationships between topographic metrics and erosion rates, suggest a fundamental difference in the mode of river incision within the drier interior of Bhutan and the wetter foothills.
ContributorsAdams, Byron A (Author) / Whipple, Kelin X (Thesis advisor) / Hodges, Kip V (Thesis advisor) / Heimsath, Arjun M (Committee member) / Arrowsmith, Ramon (Committee member) / Hurtado, Jose M (Committee member) / Arizona State University (Publisher)
Created2014
154544-Thumbnail Image.png
Description
Understanding the structural evolution of planetary surfaces provides key insights to their physical properties and processes. On the Moon, large-scale tectonism was thought to have ended over a billion years ago. However, new Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Camera (NAC) high resolution images show the Moon’s surface in

Understanding the structural evolution of planetary surfaces provides key insights to their physical properties and processes. On the Moon, large-scale tectonism was thought to have ended over a billion years ago. However, new Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Camera (NAC) high resolution images show the Moon’s surface in unprecedented detail and show many previously unidentified tectonic landforms, forcing a re-assessment of our views of lunar tectonism. I mapped lobate scarps, wrinkle ridges, and graben across Mare Frigoris – selected as a type area due to its excellent imaging conditions, abundance of tectonic landforms, and range of inferred structural controls. The distribution, morphology, and crosscutting relationships of these newly identified populations of tectonic landforms imply a more complex and longer-lasting history of deformation that continues to today. I also performed additional numerical modeling of lobate scarp structures that indicates the upper kilometer of the lunar surface has experienced 3.5-18.6 MPa of differential stress in the recent past, likely due to global compression from radial thermal contraction.

Central pit craters on Mars are another instance of intriguing structures that probe subsurface physical properties. These kilometer-scale pits are nested in the centers of many impact craters on Mars as well as on icy satellites. They are inferred to form in the presence of a water-ice rich substrate; however, the process(es) responsible for their formation is still debated. Previous models invoke origins by either explosive excavation of potentially water-bearing crustal material, or by subsurface drainage of meltwater and/or collapse. I assessed radial trends in grain size around central pits using thermal inertias calculated from Thermal Emission Imaging System (THEMIS) thermal infrared images. Average grain size decreases with radial distance from pit rims – consistent with pit-derived ejecta but not expected for collapse models. I present a melt-contact model that might enable a delayed explosion, in which a central uplift brings ice-bearing substrate into contact with impact melt to generate steam explosions and excavate central pits during the impact modification stage.
ContributorsWilliams, Nathan Robert (Author) / Bell, James (Thesis advisor) / Robinson, Mark (Committee member) / Christenen, Philip (Committee member) / Farmer, Jack (Committee member) / Shirzaei, Manoochehr (Committee member) / Arizona State University (Publisher)
Created2016
171512-Thumbnail Image.png
Description
Mountain landscapes reflect competition between tectonic processes acting to build topography and erosive processes acting to wear it down. In temperate mountain landscapes, bedrock rivers are the primary erosional agent, setting both the pace of landscape evolution and form of the surrounding topography. Theory predicts that river steepness is sensitive

Mountain landscapes reflect competition between tectonic processes acting to build topography and erosive processes acting to wear it down. In temperate mountain landscapes, bedrock rivers are the primary erosional agent, setting both the pace of landscape evolution and form of the surrounding topography. Theory predicts that river steepness is sensitive to climatic, tectonic, and lithologic factors, which dictate the rates and mechanics of erosional processes. Thus, encoded into topography is an archive of information about forces driving landscape evolution. Decoding this archive, however, is fraught and climate presents a particularly challenging conundrum: despite decades of research describing theoretically how climate should affect topography, unambiguous natural examples from tectonically active landscapes where variations in climate demonstrably influence topography are elusive. In this dissertation, I first present a theoretical framework describing how the spatially varied nature of orographic rainfall patterns, which are ubiquitous features of mountain climates, complicate expectations about how climate should influence river steepness and erosion. I then apply some of these ideas to the northern-central Andes. By analyzing river profiles spanning more than 1500 km across Peru and Bolivia, I show that the regional orographic rainfall pattern this landscape experiences systematically influences fluvial erosional efficiency and thus topography. I also show how common simplifying assumptions built into conventional topographic analysis techniques may introduce biases that undermine detection of climatic signatures in landscapes where climate, tectonics, and lithology all covary – a common condition in mountain landscapes where these techniques are often used. I continue by coupling this analysis with published erosion rates and a new dataset of 25 cosmogenic 10Be catchment average erosion rates. Once the influence of climate is accounted for, functional relationships emerge among channel steepness, erosion rate, and lithology. I then use these functional relationships to produce a calibrated erosion rate map that spans over 300 km of the southern Peruvian Andes. These results demonstrate that accounting for the effects of climate significantly enhances the ability to decode channel steepness patterns. Along with this comes the potential to better understand rates and patterns of tectonic processes, and identify seismic hazards associated with tectonic activity using topography.
ContributorsLeonard, Joel Scott (Author) / Whipple, Kelin (Thesis advisor) / Arrowsmith, Ramon (Committee member) / Christensen, Philip (Committee member) / Forte, Adam (Committee member) / Heimsath, Arjun (Committee member) / Hodges, Kip (Committee member) / Arizona State University (Publisher)
Created2022
171496-Thumbnail Image.png
Description
The South Tibetan Detachment System (STDS) marks a major decoupling horizon in the Himalaya, separating the highly metamorphosed infrastructure in the footwall from the weakly to unmetamorphosed superstructure in the hanging wall. The STDS stretches the entire range and is likely one of the most significant deformational features of the

The South Tibetan Detachment System (STDS) marks a major decoupling horizon in the Himalaya, separating the highly metamorphosed infrastructure in the footwall from the weakly to unmetamorphosed superstructure in the hanging wall. The STDS stretches the entire range and is likely one of the most significant deformational features of the orogen, but its spatial and temporal evolution remain relatively unconstrained. As its name suggests, the STDS is a system of faults which occur at slightly different structural levels and are often diachronous. Detailed studies on the different strands are needed to understand the slip history of the system as a whole, which in turn will improve understanding of Himalayan orogenesis, thus informing tectonic models for continental orogenesis in general. I focus on some of the best exposed strands of the STDS which are located in the Annapurna region of Nepal. Outcrops within the shear zones of basal structures in the Kali Gandaki and Marsyandi valleys – the Annapurna and Chame detachments – contain leucogranites that are variably deformed via ductile slip on the detachments. I used U/Pb zircon and Th/Pb monazite geochronology to constrain emplacement ages of these leucogranites, which suggest ductile slip ceased prior to 14.95 ± 0.78 Ma and 16.0 ± 1.1 Ma on the Annapurna and Chame detachments respectively. 40Ar/ 39Ar muscovite and biotite, (U-Th)/He zircon and apatite thermochronology data and resulting thermal-kinematic models for samples I collected in the shear zones and footwalls of these detachments suggest further slip was ongoing on both detachments until ca. 12 Ma, although the majority of slip on the Chame detachment likely ceased by ca. 15-14 Ma. I also collected samples in the footwall of a structurally higher detachment in the Marsyandi and the resulting cooling ages and thermal-kinematic models suggest slip was contemporaneous with that on the lower Chame detachment. The new constraints on N-S extension on the STDS in the Annapurna region presented in this dissertation call into question the popular idea of a geodynamic change from N-S to E-W extension in the central Himalaya during the early Miocene, and emphasize the importance of the STDS as a major decoupling horizon.
ContributorsPye, Alexandra Eleanor (Author) / Hodges, Kip (Thesis advisor) / Whipple, Kelin (Committee member) / Barboni, Melanie (Committee member) / van Soest, Matthijs (Committee member) / McDonald, Christopher (Committee member) / Arizona State University (Publisher)
Created2022
155856-Thumbnail Image.png
Description
The collision of India and Eurasia constructed the Himalayan Mountains. Questions remain regarding how subsequent exhumation by climatic and tectonic processes shaped the landscape throughout the Late Cenozoic to create the complex architecture observed today. The Mount Everest region underwent tectonic denudation by extension and bestrides one of the world’s

The collision of India and Eurasia constructed the Himalayan Mountains. Questions remain regarding how subsequent exhumation by climatic and tectonic processes shaped the landscape throughout the Late Cenozoic to create the complex architecture observed today. The Mount Everest region underwent tectonic denudation by extension and bestrides one of the world’s most significant rain shadows. Also, glacial and fluvial processes eroded the Everest massif over shorter timescales. In this work, I review new bedrock and detrital thermochronological and geochronological data and both one- and two-dimensional thermal-mechanical modeling that provides insights on the age range and rates of tectonic and erosional processes in this region.

A strand of the South Tibetan detachment system (STDS), a series of prominent normal-sense structures that dip to the north and strike along the Himalayan spine, is exposed in the Rongbuk valley near Everest. Using thermochronometric techniques, thermal-kinematic modeling, and published (U-Th)/Pb geochronology, I show exhumation rates were high (~3-4 mm/a) from at least 20 to 13 Ma because of slip on the STDS. Subsequently, exhumation rates dropped drastically to ≤ 0.5 mm/a and remain low today. However, thermochronometric datasets and thermal-kinematic modeling results from Nepal south of Everest reveal a sharp transition in cooling ages and exhumation rates across a major knickpoint in the river profile, corresponding to the modern-day Himalayan rainfall transition. To the north of this transition, exhumation histories are similar to those in Tibet. Conversely, < 3 km south of the transition, exhumation rates were relatively low until the Pliocene, when they increased to ~4 mm/a before slowing at ~3 Ma. Such contrasting exhumation histories over a short distance suggest that bedrock exhumation rates correlate with modern precipitation patterns in deep time, however, there are competing interpretations regarding this correlation.

My work also provides insights regarding how processes of glacial erosion act in a glacio-fluvial valley north of Everest. Integrated laser ablation U/Pb and (U-Th)/He dating of detrital zircon from fluvial and moraine sediments reveal sourcing from distinctive areas of the catchment. In general, the glacial advances eroded material from lower elevations, while the glacial outwash system carries material from higher elevations.
ContributorsSchultz, Mary Hannah (Author) / Hodges, Kip V (Thesis advisor) / Whipple, Kelin X (Committee member) / Semken, Steven (Committee member) / Heimsath, Arjun M (Committee member) / Till, Christy (Committee member) / Arizona State University (Publisher)
Created2017