Matching Items (6)
Filtering by

Clear all filters

150188-Thumbnail Image.png
Description
Meter-resolution topography gathered by LiDAR (Light Detection and Ranging) has become an indispensable tool for better understanding of many surface processes including those sculpting landscapes that record information about earthquake hazards for example. For this reason, and because of the spectacular representation of the phenomena that these data provide, it

Meter-resolution topography gathered by LiDAR (Light Detection and Ranging) has become an indispensable tool for better understanding of many surface processes including those sculpting landscapes that record information about earthquake hazards for example. For this reason, and because of the spectacular representation of the phenomena that these data provide, it is appropriate to integrate these data into Earth science educational materials. I seek to answer the following research question: "will using the LiDAR topography data instead of, or alongside, traditional visualizations and teaching methods enhance a student's ability to understand geologic concepts such as plate tectonics, the earthquake cycle, strike-slip faults, and geomorphology?" In order to answer this question, a ten-minute introductory video on LiDAR and its uses for the study of earthquakes entitled "LiDAR: Illuminating Earthquake Hazards" was produced. Additionally, LiDAR topography was integrated into the development of an undergraduate-level educational activity, the San Andreas fault (SAF) earthquake cycle activity, designed to teach introductory Earth science students about the earthquake cycle. Both the LiDAR video and the SAF activity were tested in undergraduate classrooms in order to determine their effectiveness. A pretest and posttest were administered to introductory geology lab students. The results of these tests show a notable increase in understanding LiDAR topography and its uses for studying earthquakes from pretest to posttest after watching the video on LiDAR, and a notable increase in understanding the earthquake cycle from pretest to posttest using the San Andreas Fault earthquake cycle exercise. These results suggest that the use of LiDAR topography within these educational tools is beneficial for students when learning about the earthquake cycle and earthquake hazards.
ContributorsRobinson, Sarah Elizabeth (Author) / Arrowsmith, Ramon (Thesis advisor) / Reynolds, Stephen J. (Committee member) / Semken, Steven (Committee member) / Arizona State University (Publisher)
Created2011
168501-Thumbnail Image.png
Description
The American Southwest is one of the most rapidly growing regions of the United States, as are similar arid regions globally. Across these landscapes where surface water is intermittent and variable, groundwater aquifers recharged by surface waters become a keystone resource for communities and are consumed at rates disproportional to

The American Southwest is one of the most rapidly growing regions of the United States, as are similar arid regions globally. Across these landscapes where surface water is intermittent and variable, groundwater aquifers recharged by surface waters become a keystone resource for communities and are consumed at rates disproportional to recharge. In this study, I focus on the controls of runoff generation and connectivity at both hillslope and watershed scales along a piedmont slope. I also investigate the effects of plant phenology on hydrologic connectivity and runoff response at the hillslope scale during the summer monsoon season. To carry out this work, I combine existing hydrologic instrumentation, a new set of runoff plots with high-resolution monitoring, near-field remote sensing techniques, and historical datasets. Key analyses show that a rainfall intensity (I30) of 10 mm/hr yields runoff production at three scales (8, 12700, and 46700 m2). Rainfall, runoff, and soil moisture observations indicate a Hortonian (infiltration-excess) dominated system with little control imposed by antecedent wetness. Hydrologic connectivity analyses revealed that <15% of total rainfall events generate runoff at the hillslope scale. Of the hillslope events, only 20% of the runoff production leads to discharge at the outlet. Vegetation was observed to effect individual plot runoff response to rainfall. The results of this study show that 1) rainfall intensity is a large control on runoff production at all three scales (8, 12700, and 46700 m2), 2) proportions between bare and vegetated space effect runoff production at the hillslope scale, and 3) runoff connectivity decreases, and channel losses increase as you move downstream on an individual storm basis and across a 30-year historical record. These findings indicate that connectivity from the hillslope to outlet scale can be an evolving process over thehistorical record, reliant on both rainfall intensity, plant and bare soil mosaics, and available channel storage.
ContributorsKeller, Zachary Theodore (Author) / Vivoni, Enrique R (Thesis advisor) / Whipple, Kelin X (Committee member) / Semken, Steven (Committee member) / Arizona State University (Publisher)
Created2021
165679-Thumbnail Image.png
Description
The Greater Obsidian Pool Area just south of the Mud Volcano area in Yellowstone National Park is an active and ever-changing hot spring region. Situated next to a lake in a meadow between several hills of glacial deposits, north of the Elephant Back rhyolite flow, a diverse group of hot

The Greater Obsidian Pool Area just south of the Mud Volcano area in Yellowstone National Park is an active and ever-changing hot spring region. Situated next to a lake in a meadow between several hills of glacial deposits, north of the Elephant Back rhyolite flow, a diverse group of hot springs has been developing. This study examines the geologic and geomorphic context of the hot springs, finding evidence for a previously undiscovered hydrothermal explosion crater and examining the deposits around the region that contribute to properties of the groundwater table. Hot spring geochemical measurements (Cl- and SO4-2) taken over the course of 20 years are used to determine fluid sourcing of the springs. The distribution of Cl-, an indicator of water-rock interaction, in the hot springs leads to the theory of a fissure delivering hydrothermal fluid in a line across the hot spring zone, with meteoric water from incoming groundwater diluting hot springs moving further from the fissure. A possible second dry fissure delivering mostly gas is also a possible explanation for some elevated sulfate concentrations in certain springs. The combination of geology, geomorphology, and geochemistry reveals how the surface and subsurface operate to generate different hot spring compositions.
ContributorsAlexander, Erin (Author) / Shock, Everett (Thesis director) / Whipple, Kelin (Committee member) / Barrett, The Honors College (Contributor) / School of Earth and Space Exploration (Contributor) / School of Molecular Sciences (Contributor)
Created2022-05
154314-Thumbnail Image.png
Description
Both volcanism and impact cratering produce ejecta and associated deposits incorporating a molten rock component. While the heat sources are different (exogenous vs. endogenous), the end results are landforms with similar morphologies including ponds and flows of impact melt and lava around the central crater. Ejecta from both impact and

Both volcanism and impact cratering produce ejecta and associated deposits incorporating a molten rock component. While the heat sources are different (exogenous vs. endogenous), the end results are landforms with similar morphologies including ponds and flows of impact melt and lava around the central crater. Ejecta from both impact and volcanic craters can also include a high percentage of melted rock. Using Lunar Reconnaissance Orbiter Camera Narrow Angle Camera (LROC NAC) images, crucial details of these landforms are finally revealed, suggesting a much more dynamic Moon than is generally appreciated. Impact melt ponds and flows at craters as small as several hundred meters in diameter provide empirical evidence of abundant melting during the impact cratering process (much more than was previously thought), and this melt is mobile on the lunar surface for a significant time before solidifying. Enhanced melt deposit occurrences in the lunar highlands (compared to the mare) suggest that porosity, target composition, and pre-existing topography influence melt production and distribution. Comparatively deep impact craters formed in young melt deposits connote a relatively rapid evolution of materials on the lunar surface. On the other end of the spectrum, volcanic eruptions have produced the vast, plains-style mare basalts. However, little was previously known about the details of small-area eruptions and proximal volcanic deposits due to a lack of resolution. High-resolution images reveal key insights into small volcanic cones (0.5-3 km in diameter) that resemble terrestrial cinder cones. The cones comprise inter-layered materials, spatter deposits, and lava flow breaches. The widespread occurrence of the cones in most nearside mare suggests that basaltic eruptions occur from multiple sources in each basin and/or that rootless eruptions are relatively common. Morphologies of small-area volcanic deposits indicate diversity in eruption behavior of lunar basaltic eruptions driven by magmatic volatiles. Finally, models of polar volatile behavior during impact-heating suggest that chemical alteration of minerals in the presence of liquid water is one possible outcome that was previously not thought possible on the Moon.
ContributorsStopar, Julie D (Author) / Robinson, Mark S. (Thesis advisor) / Bell, James (Committee member) / Christensen, Philip R. (Philip Russel) (Committee member) / Clarke, Amanda (Committee member) / Scowen, Paul (Committee member) / Arizona State University (Publisher)
Created2016
155165-Thumbnail Image.png
Description
For this dissertation, three separate papers explore the study areas of the western Grand Canyon, the Grand Staircase (as related to Grand Canyon) and Desolation Canyon on the Green River in Utah.

In western Grand Canyon, I use comparative geomorphology between the Grand Canyon and the Grand Wash Cliffs (GWC). We

For this dissertation, three separate papers explore the study areas of the western Grand Canyon, the Grand Staircase (as related to Grand Canyon) and Desolation Canyon on the Green River in Utah.

In western Grand Canyon, I use comparative geomorphology between the Grand Canyon and the Grand Wash Cliffs (GWC). We propose the onset of erosion of the GWC is caused by slip on the Grand Wash Fault that formed between 18 and 12 million years ago. Hillslope angle and channel steepness are higher in Grand Canyon than along the Grand Wash Cliffs despite similar rock types, climate and base level fall magnitude. These experimental controls allow inference that the Grand Canyon is younger and eroding at a faster rate than the Grand Wash Cliffs.

The Grand Staircase is the headwaters of some of the streams that flow into Grand Canyon. A space-for-time substitution of erosion rates, supported by landscape simulations, implies that the Grand Canyon is the result of an increase in base level fall rate, with the older, slower base level fall rate preserved in the Grand Staircase. Our data and analyses also support a younger, ~6-million-year estimate of the age of Grand Canyon that is likely related to the integration of the Colorado River from the Colorado Plateau to the Basin and Range. Complicated cliff-band erosion and its effect on cosmogenic erosion rates are also explored, guiding interpretation of isotopic data in landscapes with stratigraphic variation in quartz and rock strength.

Several hypotheses for the erosion of Desolation Canyon are tested and refuted, leaving one plausible conclusion. I infer that the Uinta Basin north of Desolation Canyon is eroding slowly and that its form represents a slow, stable base level fall rate. Downstream of Desolation Canyon, the Colorado River is inferred to have established itself in the exhumed region of Canyonlands and to have incised to near modern depths prior to the integration of the Green River and the production of relief in Desolation Canyon. Analysis of incision and erosion rates in the region suggests integration is relatively recent.
ContributorsDarling, Andrew Lee (Author) / Whipple, Kelin (Thesis advisor) / Semken, Steven (Committee member) / Arrowsmith, Ramon (Committee member) / DeVecchio, Duane (Committee member) / Heimsath, Arjun (Committee member) / Arizona State University (Publisher)
Created2016
156119-Thumbnail Image.png
Description
Impact cratering and volcanism are two fundamental processes that alter the surfaces of the terrestrial planets. Though well studied through laboratory experiments and terrestrial analogs, many questions remain regarding how these processes operate across the Solar System. Little is known about the formation of large impact basins (>300 km in

Impact cratering and volcanism are two fundamental processes that alter the surfaces of the terrestrial planets. Though well studied through laboratory experiments and terrestrial analogs, many questions remain regarding how these processes operate across the Solar System. Little is known about the formation of large impact basins (>300 km in diameter) and the degree to which they modify planetary surfaces. On the Moon, large impact basins dominate the terrain and are relatively well preserved. Because the lunar geologic timescale is largely derived from basin stratigraphic relations, it is crucial that we are able to identify and characterize materials emplaced as a result of the formation of the basins, such as light plains. Using high-resolution images under consistent illumination conditions and topography from the Lunar Reconnaissance Orbiter Camera (LROC), a new global map of light plains is presented at an unprecedented scale, revealing critical details of lunar stratigraphy and providing insight into the erosive power of large impacts. This work demonstrates that large basins significantly alter the lunar surface out to at least 4 radii from the rim, two times farther than previously thought. Further, the effect of pre-existing topography on the degradation of impact craters is unclear, despite their use in the age dating of surfaces. Crater measurements made over large regions of consistent coverage using LROC images and slopes derived from LROC topography show that pre-existing topography affects crater abundances and absolute model ages for craters up to at least 4 km in diameter.

On Mars, small volcanic edifices can provide valuable insight into the evolution of the crust and interior, but a lack of superposed craters and heavy mantling by dust make them difficult to age date. On Earth, morphometry can be used to determine the ages of cinder cone volcanoes in the absence of dated samples. Comparisons of high-resolution topography from the Context Imager (CTX) and a two-dimensional nonlinear diffusion model show that the forms observed on Mars could have been created through Earth-like processes, and with future work, it may be possible to derive an age estimate for these features in the absence of superposed craters or samples.
ContributorsMeyer, Heather (Author) / Robinson, Mark S (Thesis advisor) / Bell, Jim (Thesis advisor) / Denevi, Brett (Committee member) / Clarke, Amanda (Committee member) / Asphaug, Erik (Committee member) / Arizona State University (Publisher)
Created2018