Matching Items (10)
Filtering by

Clear all filters

152999-Thumbnail Image.png
Description
The taxonomic and metabolic profile of the microbial community inhabiting a natural system is largely determined by the physical and geochemical properties of the system. However, the influences of parameters beyond temperature, pH and salinity have been poorly analyzed with few studies incorporating the comprehensive suite of physical and geochemical

The taxonomic and metabolic profile of the microbial community inhabiting a natural system is largely determined by the physical and geochemical properties of the system. However, the influences of parameters beyond temperature, pH and salinity have been poorly analyzed with few studies incorporating the comprehensive suite of physical and geochemical measurements required to fully investigate the complex interactions known to exist between biology and the environment. Further, the techniques used to classify the taxonomic and functional composition of a microbial community are fragmented and unwieldy, resulting in unnecessarily complex and often non-consilient results.

This dissertation integrates environmental metagenomes with extensive geochemical metadata for the development and application of multidimensional biogeochemical metrics. Analysis techniques including a Markov cluster-based evolutionary distance between whole communities, oligonucleotide signature-based taxonomic binning and principal component analysis of geochemical parameters allow for the determination of correlations between microbial community dynamics and environmental parameters. Together, these techniques allow for the taxonomic classification and functional analysis of the evolution of hot spring communities. Further, these techniques provide insight into specific geochemistry-biology interactions which enable targeted analyses of community taxonomic and functional diversity. Finally, analysis of synonymous substitution rates among physically separated microbial communities provides insights into microbial dispersion patterns and the roles of environmental geochemistry and community metabolism on DNA transfer among hot spring communities.

The data presented here confirms temperature and pH as the primary factors shaping the evolutionary trajectories of microbial communities. However, the integration of extensive geochemical metadata reveals new links between geochemical parameters and the distribution and functional diversification of communities. Further, an overall geochemical gradient (from multivariate analyses) between natural systems provides one of the most complete predictions of microbial community functional composition and inter-community DNA transfer rates. Finally, the taxonomic classification and clustering techniques developed within this dissertation will facilitate future genomic and metagenomic studies through enhanced community profiling obtainable via Markov clustering, longer oligonucleotide signatures and insight into PCR primer biases.
ContributorsAlsop, Eric Bennie (Author) / Raymond, Jason (Thesis advisor) / Anbar, Ariel (Committee member) / Farmer, Jack (Committee member) / Shock, Everett (Committee member) / Walker, Sarah (Committee member) / Arizona State University (Publisher)
Created2014
150024-Thumbnail Image.png
Description
Chemical and mineralogical data from Mars shows that the surface has been chemically weathered on local to regional scales. Chemical trends and the types of chemical weathering products present on the surface and their abundances can elucidate information about past aqueous processes. Thermal-infrared (TIR) data and their respective models are

Chemical and mineralogical data from Mars shows that the surface has been chemically weathered on local to regional scales. Chemical trends and the types of chemical weathering products present on the surface and their abundances can elucidate information about past aqueous processes. Thermal-infrared (TIR) data and their respective models are essential for interpreting Martian mineralogy and geologic history. However, previous studies have shown that chemical weathering and the precipitation of fine-grained secondary silicates can adversely affect the accuracy of TIR spectral models. Furthermore, spectral libraries used to identify minerals on the Martian surface lack some important weathering products, including poorly-crystalline aluminosilicates like allophane, thus eliminating their identification in TIR spectral models. It is essential to accurately interpret TIR spectral data from chemically weathered surfaces to understand the evolution of aqueous processes on Mars. Laboratory experiments were performed to improve interpretations of TIR data from weathered surfaces. To test the accuracy of deriving chemistry of weathered rocks from TIR spectroscopy, chemistry was derived from TIR models of weathered basalts from Baynton, Australia and compared to actual weathering rind chemistry. To determine how specific secondary silicates affect the TIR spectroscopy of weathered basalts, mixtures of basaltic minerals and small amounts of secondary silicates were modeled. Poorly-crystalline aluminosilicates were synthesized and their TIR spectra were added to spectral libraries. Regional Thermal Emission Spectrometer (TES) data were modeled using libraries containing these poorly-crystalline aluminosilicates to test for their presence on the Mars. Chemistry derived from models of weathered Baynton basalts is not accurate, but broad chemical weathering trends can be interpreted from the data. TIR models of mineral mixtures show that small amounts of crystalline and amorphous silicate weathering products (2.5-5 wt.%) can be detected in TIR models and can adversely affect modeled plagioclase abundances. Poorly-crystalline aluminosilicates are identified in Northern Acidalia, Solis Planum, and Meridiani. Previous studies have suggested that acid sulfate weathering was the dominant surface alteration process for the past 3.5 billion years; however, the identification of allophane indicates that alteration at near-neutral pH occurred on regional scales and that acid sulfate weathering is not the only weathering process on Mars.
ContributorsRampe, Elizabeth Barger (Author) / Sharp, Thomas G (Thesis advisor) / Christensen, Phillip (Committee member) / Hervig, Richard (Committee member) / Shock, Everett (Committee member) / Williams, Lynda (Committee member) / Arizona State University (Publisher)
Created2011
151140-Thumbnail Image.png
Description
Molybdenum and uranium isotope variations are potentially powerful tools for reconstructing the paleoredox history of seawater. Reliable application and interpretation of these proxies requires not only detailed knowledge about the fractionation factors that control the distribution of molybdenum and uranium isotopes in the marine system, but also a thorough understanding

Molybdenum and uranium isotope variations are potentially powerful tools for reconstructing the paleoredox history of seawater. Reliable application and interpretation of these proxies requires not only detailed knowledge about the fractionation factors that control the distribution of molybdenum and uranium isotopes in the marine system, but also a thorough understanding of the diagenetic processes that may affect molybdenum and uranium isotopes entering the rock record. Using samples from the Black Sea water column, the first water column profile of 238U/235U variations from a modern euxinic basin has been measured. This profile allows the direct determination of the 238U/235U fractionation factor in a euxinic marine setting. More importantly however, these data demonstrate the extent of Rayleigh fractionation of U isotopes that can occur in euxinic restricted basins. Because of this effect, the offset of 238U/235U between global average seawater and coeval black shales deposited in restricted basins is expected to depend on the degree of local uranium drawdown from the water column, potentially complicating the interpretation 238U/235U paleorecords. As an alternative to the black shales typically used for paleoredox reconstructions, molybdenum and uranium isotope variations in bulk carbonate sediments from the Bahamas are examined. The focus of this work was to determine what processes, if any, fractionate molybdenum and uranium isotopes during incorporation into bulk carbonate sediments and their subsequent diagenesis. The results demonstrate that authigenic accumulation of molybdenum and uranium from anoxic and sulfidic pore waters is a dominant process controlling the concentration and isotopic composition of these sediments during early diagenesis. Examination of ODP drill core samples from the Bahamas reveals similar behavior for sediments during the first ~780ka of burial, but provides important examples where isolated cores and samples occasionally demonstrate additional fractionation, the cause of which remains poorly understood.
ContributorsRomaniello, Stephen J. (Author) / Anbar, Ariel (Thesis advisor) / Hartnett, Hilairy (Committee member) / Herrmann, Achim (Committee member) / Shock, Everett (Committee member) / Wadhwa, Meenakshi (Committee member) / Arizona State University (Publisher)
Created2012
151223-Thumbnail Image.png
Description
Early spacecraft missions to Mars, including the Marnier and Viking orbiters and landers revealed a morphologically and compositionally diverse landscape that reshaped widely held views of Mars. More recent spacecraft including Mars Global Surveyor, Mars Odyssey, Mars Express, Mars Reconnaissance Orbiter, and the Mars Exploration Rovers have further refined, enhanced,

Early spacecraft missions to Mars, including the Marnier and Viking orbiters and landers revealed a morphologically and compositionally diverse landscape that reshaped widely held views of Mars. More recent spacecraft including Mars Global Surveyor, Mars Odyssey, Mars Express, Mars Reconnaissance Orbiter, and the Mars Exploration Rovers have further refined, enhanced, and diversified our understanding of Mars. In this dissertation, I take a multiple-path approach to planetary and Mars science including data analysis and instrument development. First, I present several tools necessary to effectively use new, complex datasets by highlighting unique and innovative data processing techniques that allow for the regional to global scale comparison of multiple datasets. Second, I present three studies that characterize several processes on early Mars, where I identify a regional, compositionally distinct, in situ, stratigraphically significant layer in Ganges and Eos Chasmata that formed early in martian history. This layer represents a unique period in martian history where primitive mantle materials were emplaced over large sections of the martian surface. While I originally characterized this layer as an effusive lava flow, based on the newly identified regional or global extent of this layer, I find the only likely scenario for its emplacement is the ejecta deposit of the Borealis Basin forming impact event. I also re-examine high thermal inertia, flat-floored craters identified in Viking data and conclude they are typically more mafic than the surrounding plains and were likely infilled by primitive volcanic materials during, or shortly after the Late Heavy Bombardment. Furthermore, the only plausible source for these magmas is directly related to the impact process, where mantle decompression melting occurs as result of the removal of overlying material by the impactor. Finally, I developed a new laboratory microscopic emission and reflectance spectrometer designed to help improve the interpretation of current remote sensing or in situ data from planetary bodies. I present the design, implementation, calibration, system performance, and preliminary results of this instrument. This instrument is a strong candidate for the next generation in situ rover instruments designed to definitively assess sample mineralogy and petrology while preserving geologic context.
ContributorsEdwards, Christopher (Author) / Christensen, Philip R. (Thesis advisor) / Bell, James (Committee member) / Sharp, Thomas (Committee member) / Clarke, Amanda B (Committee member) / Shock, Everett (Committee member) / Arizona State University (Publisher)
Created2012
156103-Thumbnail Image.png
Description
Carboxylic acids are an abundant and reactive species present throughout our solar system. The reactions of carboxylic acids can shape the organic abundances within oil field brines, carbonaceous chondrites, and different ranks of coal.

I have performed hydrothermal experiments with model aromatic carboxylic acids in the presences of different oxide

Carboxylic acids are an abundant and reactive species present throughout our solar system. The reactions of carboxylic acids can shape the organic abundances within oil field brines, carbonaceous chondrites, and different ranks of coal.

I have performed hydrothermal experiments with model aromatic carboxylic acids in the presences of different oxide minerals to investigate the reactions available to carboxylic acids in the presence of mineral surfaces. By performing experiments containing one organic compound and one mineral surface, I can begin to unravel the different reactions that can occur in the presence of different minerals.

I performed experiments with phenylacetic acid (PAA), hydrocinnamic acid (HCA) and benzoic acid (BA) in the presence of spinel (MgAl2O4), magnetite (Fe3O4), hematite (Fe2O3), and corundum (Al2O3). The focus of this work was metal oxide minerals, with and without transition metal atoms, and with different crystal structures. I found that all four oxide minerals facilitated ketonic decarboxylation reactions of carboxylic acids to form ketone structures. The two minerals containing transition metals (magnetite and hematite) also opened a reaction path involving electrochemical oxidation of one carboxylic acid, PAA, to the shorter chain version of a second carboxylic acid, BA, in experiments starting with PAA. Fundamental studies like these can help to shape our knowledge of the breadth of organic reactions that are possible in geologic systems and the mechanisms of those reactions.
ContributorsJohnson, Kristin Nicole (Author) / Shock, Everett (Thesis advisor) / Hartnett, Hilairy (Committee member) / Gould, Ian (Committee member) / Arizona State University (Publisher)
Created2017
154927-Thumbnail Image.png
Description
Amorphous phases are detected over large regions of the Martian surface from orbit and in more localized deposits by rovers on the surface. Amorphous silicates can be primary or secondary in origin, both having formed through very different processes, so the unambiguous identification of these phases is important for understanding

Amorphous phases are detected over large regions of the Martian surface from orbit and in more localized deposits by rovers on the surface. Amorphous silicates can be primary or secondary in origin, both having formed through very different processes, so the unambiguous identification of these phases is important for understanding the geologic history of Mars. Secondary amorphous silicates are poorly understood and underrepresented in spectral libraries because they lack the long-range structural order that makes their crystalline counterparts identifiable in most analytical techniques. Fortunately, even amorphous materials have some degree of short-range order so that distinctions can be made with careful characterization.

Two sets of laboratory experiments were used to produce and characterize amorphous weathering products under probable conditions for the Martian surface, and one global spectral analysis using thermal-infrared (TIR) data from the Thermal Emission Spectrometer (TES) instrument was used to constrain variations in amorphous silicates across the Martian surface. The first set of experiments altered crystalline and glassy basalt samples in an open system under strong (pH 1) and moderate (pH 3) acidic conditions. The second set of experiments simulated a current-day Martian weathering scenario involving transient liquid water where basalt glass weathering solutions, formed in circumneutral (pH ~5.5 and 7) conditions, were rapidly evaporated, precipitating amorphous silicates. The samples were characterized using visible and near-infrared (VNIR) spectroscopy, TIR spectroscopy, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD).

All experiments formed amorphous silicate phases that are new to spectral libraries. Moderately acidic alteration experiments produced no visible or spectral evidence of alteration products, whereas exposure of basalt glass to strongly acidic fluids produced silica-rich alteration layers that are spectrally consistent with VNIR and TIR spectra from the circum-polar region of Mars, indicating this region has undergone acidic weathering. Circum-netural pH basalt weathering solution precipitates are consistent with amorphous materials measured by rovers in soil and rock surface samples in Gale and Gusev Craters, suggesting transient water interactions over the last 3 billion years. Global spectral analyses determine that alteration conditions have varied across the Martian surface, and that alteration has been long lasting.
ContributorsSmith, Rebecca (Author) / Christensen, Philip R. (Philip Russel) (Thesis advisor) / Shock, Everett (Committee member) / Hartnett, Hilairy (Committee member) / Shim, Sang-Heon (Committee member) / Sharp, Thomas (Committee member) / Arizona State University (Publisher)
Created2016
156998-Thumbnail Image.png
Description
Ethnogeology is the scientific study of human relationships with the Earth as a system, typically conducted within the context of a specific culture. Indigenous or historically resident people may perceive local places differently from outside observers trained in the Western tradition. Ethnogeologic knowledge includes traditional indigenous knowledge (alternatively referred

Ethnogeology is the scientific study of human relationships with the Earth as a system, typically conducted within the context of a specific culture. Indigenous or historically resident people may perceive local places differently from outside observers trained in the Western tradition. Ethnogeologic knowledge includes traditional indigenous knowledge (alternatively referred to as traditional ecological knowledge or TEK), which exceeds the boundaries of non-Indigenous ideas of physical characteristics of the world, tends to be more holistic, and is culturally framed. In this ethnogeological study, I have implemented several methods of participatory rapid assessment (PRA) from the discipline of field ethnography to collect culturally framed geological knowledge, as well to measure the authenticity of the knowledge collected. I constructed a cultural consensus model (CCM) about karst as a domain of knowledge. The study area is located in the karst physiographic region of the Caribbean countries of the Dominican Republic (DR) and Puerto Rico (PR). Ethnogeological data collected and analyzed using CCM satisfied the requirements of a model where I have found statistically significance among participant’s agreement and competence values. Analysis of the competence means in the population of DR and PR results in p < 0.05 validating the methods adapted for this study. I discuss the CCM for the domain of karst (in its majority) that is shared among consultants in the countries of PR and the DR that is in the form of metaphors and other forms of culturally framed descriptions. This work continuing insufficient representation of minority groups such as Indigenous people, Native Americans, Alaska Natives, and Hispanic/Latinxs in the Earth Sciences.
ContributorsGarcia, Angel Antonio (Author) / Semken, Steven (Thesis advisor) / Brandt, Elizabeth, (Committee member) / Shock, Everett (Committee member) / Bowman, Catherine (Committee member) / Anbar, Ariel (Committee member) / Arizona State University (Publisher)
Created2018
153710-Thumbnail Image.png
Description
Chemical and physical interactions of flowing ice and rock have inexorably shaped planetary surfaces. Weathering in glacial environments is a significant link in biogeochemical cycles – carbon and strontium – on Earth, and may have once played an important role in altering Mars’ surface. Despite growing recognition of the importance

Chemical and physical interactions of flowing ice and rock have inexorably shaped planetary surfaces. Weathering in glacial environments is a significant link in biogeochemical cycles – carbon and strontium – on Earth, and may have once played an important role in altering Mars’ surface. Despite growing recognition of the importance of low-temperature chemical weathering, these processes are still not well understood. Debris-coated glaciers are also present on Mars, emphasizing the need to study ice-related processes in the evolution of planetary surfaces. During Earth’s history, subglacial environments are thought to have sheltered communities of microorganisms from extreme climate variations. On Amazonian Mars, glaciers such as lobate debris aprons (LDA) could have hosted chemolithotrophic communities, making Mars’ present glaciers candidates for life preservation. This study characterizes glacial processes on both Earth and Mars.

Chemical weathering at Robertson Glacier, a small alpine glacier in the Canadian Rocky Mountains, is examined with a multidisciplinary approach. The relative proportions of differing dissolution reactions at various stages in the glacial system are empirically determined using aqueous geochemistry. Synthesis of laboratory and orbital thermal infrared spectroscopy allows identification of dissolution rinds on hand samples and characterization of carbonate dissolution signals at orbital scales, while chemical and morphological evidence for thin, discontinuous weathering rinds at microscales are evident from electron microscopy. Subglacial dissolution rates are found to outpace those of the proglacial till plain; biologically-mediated pyrite oxidation drives the bulk of this acidic weathering.

Second, the area-elevation relationship, or hypsometry, of LDA in the midlatitudes of Mars is characterized. These glaciers are believed to have formed ~500 Ma during a climate excursion. Hypsometric measurements of these debris-covered glaciers enable insight into past flow regimes and drive predictions about past climate scenarios. The LDA in this study fall into three major groups, strongly dependent on basal elevation, implying regional and climatic controls on ice formation and flow.

I show that biologically-mediated mineral reactions drive high subglacial dissolution rates, such that variations within the valley can be detected with remote sensing techniques. In future work, these insights can be applied to examining Mars’ glacial regions for signs of chemical alteration and biosignatures.
ContributorsRutledge, Alicia Marie (Author) / Christensen, Philip R. (Thesis advisor) / Shock, Everett (Committee member) / Clarke, Amanda (Committee member) / Sharp, Thomas (Committee member) / Whipple, Kelin (Committee member) / Arizona State University (Publisher)
Created2015
161966-Thumbnail Image.png
Description
The ability to find evidence of life on early Earth and other planets is constrained by the current understanding of biosignatures and our ability to differentiate fossils from abiotic mimics. When organisms transition from the living realm to the fossil record, their morphological and chemical characteristics are modified, usually resulting

The ability to find evidence of life on early Earth and other planets is constrained by the current understanding of biosignatures and our ability to differentiate fossils from abiotic mimics. When organisms transition from the living realm to the fossil record, their morphological and chemical characteristics are modified, usually resulting in the loss of information. These modifications can happen during early and late diagenesis and differ depending on local geochemical properties. These post-depositional modifications need to be understood to better interpret the fossil record. Siliceous hot spring deposits (sinters) are of particular interest for biosignature research as they are early Earth analog environments and targets for investigating the presence of fossil life on Mars. As silica-supersaturated fluids flow from the vent to the distal apron, they precipitate non-crystalline opal-A that fossilizes microbial communities at a range in scales (μm-cm). Therefore, many studies have documented the ties between the active microbial communities and the morphological and chemical biosignatures in hot springs. However, far less attention has been placed on understanding preservation in systems with complex mineralogy or how post-depositional alteration affects the retention of biosignatures. Without this context, it can be challenging to recognize biosignatures in ancient rocks. This dissertation research aims to refine our current understanding of biosignature preservation and retention in sinters. Biosignatures of interest include organic matter, microfossils, and biofabrics. The complex nature of hot springs requires a comprehensive understanding of biosignature preservation that is representative of variable chemistries and post-depositional alterations. For this reason, this dissertation research chapters are field site-based. Chapter 2 investigates biosignature preservation in an unusual spring with mixed opal-A-calcite mineralogy at Lýsuhóll, Iceland. Chapter 3 tracks how silica diagenesis modifies microfossil morphology and associated organic matter at Puchuldiza, Chile. Chapter 4 studies the effects of acid fumarolic overprinting on biosignatures in Gunnuhver, Iceland. To accomplish this, traditional geologic methods (mapping, petrography, X-ray diffraction, bulk elemental analyses) were combined with high-spatial-resolution elemental mapping to better understand diagenetic effects in these systems. Preservation models were developed to predict the types and styles of biosignatures that can be present depending on the depositional and geochemical context. Recommendations are also made for the types of deposits that are most likely to preserve biosignatures.
ContributorsJuarez Rivera, Marisol (Author) / Farmer, Jack D (Thesis advisor) / Hartnett, Hilairy E (Committee member) / Shock, Everett (Committee member) / Garcia-Pichel, Ferran (Committee member) / Trembath-Reichert, Elizabeth (Committee member) / Arizona State University (Publisher)
Created2021
165679-Thumbnail Image.png
Description
The Greater Obsidian Pool Area just south of the Mud Volcano area in Yellowstone National Park is an active and ever-changing hot spring region. Situated next to a lake in a meadow between several hills of glacial deposits, north of the Elephant Back rhyolite flow, a diverse group of hot

The Greater Obsidian Pool Area just south of the Mud Volcano area in Yellowstone National Park is an active and ever-changing hot spring region. Situated next to a lake in a meadow between several hills of glacial deposits, north of the Elephant Back rhyolite flow, a diverse group of hot springs has been developing. This study examines the geologic and geomorphic context of the hot springs, finding evidence for a previously undiscovered hydrothermal explosion crater and examining the deposits around the region that contribute to properties of the groundwater table. Hot spring geochemical measurements (Cl- and SO4-2) taken over the course of 20 years are used to determine fluid sourcing of the springs. The distribution of Cl-, an indicator of water-rock interaction, in the hot springs leads to the theory of a fissure delivering hydrothermal fluid in a line across the hot spring zone, with meteoric water from incoming groundwater diluting hot springs moving further from the fissure. A possible second dry fissure delivering mostly gas is also a possible explanation for some elevated sulfate concentrations in certain springs. The combination of geology, geomorphology, and geochemistry reveals how the surface and subsurface operate to generate different hot spring compositions.
ContributorsAlexander, Erin (Author) / Shock, Everett (Thesis director) / Whipple, Kelin (Committee member) / Barrett, The Honors College (Contributor) / School of Earth and Space Exploration (Contributor) / School of Molecular Sciences (Contributor)
Created2022-05