Matching Items (129)

131380-Thumbnail Image.png

Tecolote Cinder Cone Ballistics: Volcanic Bomb Formation and Dynamics

Description

Cinder cones are common volcanic structures that occur in fields, and on the flanks of shield volcanoes, stratovolcanoes, and calderas. Because they are common structures, they have a significant possibility of impacting humans and human environments. As such, there is

Cinder cones are common volcanic structures that occur in fields, and on the flanks of shield volcanoes, stratovolcanoes, and calderas. Because they are common structures, they have a significant possibility of impacting humans and human environments. As such, there is a need to analyze cinder cones to get a better understanding of their eruptions and associated hazards. I will approach this analysis by focusing on volcanic bombs and ballistics, which are large clots of lava that are launched from the volcanic vent, follow ballistic trajectories, and can travel meters to a few kilometers from their source (e.g. Fagents and Wilson 1993; Waitt et al. 1995).
Tecolote Volcano in the Pinacate Volcanic Field in Mexico contains multiple vents within a horseshoe-shaped crater that have all produced various ejecta (Zawacki et al. 2019). The objectives of this research are to map ballistic distribution to understand the relationship between the source vent or vents and the bombs and ballistics that litter the region around Tecolote, and interpret the eruption conditions that ejected those bombs by using their distributions, morphologies, and fine-scale textures.
The findings of this work are that these bombs are apparently from the last stages of the eruption, succeeding the final lava flows. The interiors and exteriors of the bombs display different cooling rates which can are indicated by the fabric found within. Using this, certain characteristics of the bombs during eruption were extrapolated. The ‘cow pie’ bombs were determined to be the least viscous or contained a higher gas content at the time of eruption. Whereas the ribbon/rope bombs were determined to be the most viscous or contained a lesser gas content. Looking at the Southern Bomb Field site, it is dominated by large bombs that were during flight were molded into aerodynamic shapes. The Eastern Rim site is dominated by smaller bombs that appeared to be more liquid during the eruption. This difference in the two sites is a probable indication of at least two different eruptive events of different degrees of explosivity. Overall, aerodynamic bombs are more common and extend to greater distances from the presumed vent (up to 800 m), while very fluidal bombs are uncommon beyond 500 meters. Fluidal bombs (‘cow pie’, ‘ribbon’, ‘rope/spindle’) show a clear trend in decreasing size with distance from vent, whereas the size-distance trend is less dramatic for the aerodynamic bombs.

Contributors

Agent

Created

Date Created
2020-05

132584-Thumbnail Image.png

Handheld IR Spectrometer

Description

Emission Spectroscopy is a powerful tool for the identification of mineralogical samples and has been used for decades in labs to study the geology of Earth and Mars. However, the instruments needed to make these measurements are large, expensive and

Emission Spectroscopy is a powerful tool for the identification of mineralogical samples and has been used for decades in labs to study the geology of Earth and Mars. However, the instruments needed to make these measurements are large, expensive and sensitive pieces of equipment that are too cumbersome to use in the field. There are some commercial products that attempt to work in the field, however they perform this task poorly, often resulting in limited applications, poor performance or not being truly portable. My thesis utilizes the TES family of planetary instruments as a source of inspiration for creating a truly portable Fourier Transform InfraRed spectrometer. From this initial design phase, it appears that it is possible to build an instrument with vastly improved capabilities over the current systems on the market. This roughly 12 inch by 7 inch by 8 inch device with a 3-inch diameter telescope is capable of achieving a SNR of over 1000 during a 5 minute scan of a sample allowing for 5 sigma (99.99994% Confidence) identification of 1% spectral features from 5 um to >60 um making this instrument a one of a kind device with high application potential, not only for field geologist but for the future of manned exploration of space. Currently an accurate measurement of costs is not available, however with more development and optimization a total cost of around $50K is feasible while still maintaining the same performance characteristics. If the costs can fall within an acceptable range, this device will not only be technically impressible but viable from a financial standpoint as well.

Contributors

Agent

Created

Date Created
2019-05

Cloud Piercers: Mountains and Adventure in Western North America

Description

The mountains of western North America are spectacular and diverse, from sheer walls of crumbling black limestone in the Canadian Rockies, to smooth glacially polished granite in the Wind River Range, to gargantuan ice-clad volcanoes in the Cascades. These great

The mountains of western North America are spectacular and diverse, from sheer walls of crumbling black limestone in the Canadian Rockies, to smooth glacially polished granite in the Wind River Range, to gargantuan ice-clad volcanoes in the Cascades. These great bastions of rock, snow, and ice, still very much wild and untamed, provide an incredible arena for adventure, exploration, and challenge. Over the past three years, I have devoted thousands of hours to exploring these vast wild places, climbing high peaks, steep cliffs, and frozen waterfalls. In doing so, I studied the rich geologic history of the mountains. This thesis project is a compilation of stories and images from those adventures, along with the stories of the mountains themselves: how the rocks were formed, thrust skyward, and sculpted over the ages into their present, glorious form. The photographic and detailed narrative of the geology and adventures is on a new website called Cloud Piercers, which currently features three geologically diverse mountain massifs: (1) Mount Rainier, an active volcano in the Cascade Range of Washington; (2) Mount Robson, the highest peak in the Canadian Rockies, within a terrain of folded Paleozoic sedimentary rocks; and (3) the Wind River Range of Wyoming, composed mostly of Archean metamorphic and granitic rocks. This website will be expanded in the future as the geologic studies and adventures continue.

Contributors

Agent

Created

Date Created
2019-05

132804-Thumbnail Image.png

INVESTIGATING THE DISTRIBUTION OF FROSTS IN RELATION TO PRESENT-DAY GULLY ACTIVITY ON MARS

Description

A wide range of types of activity in mid-latitude Martian gullies has been observed over the last decade (Malin et al., 2006; Harrison et al., 2009, 2015; Diniega et al., 2010; Dundas et al., 2010, 2012, 2015, 2017) with some

A wide range of types of activity in mid-latitude Martian gullies has been observed over the last decade (Malin et al., 2006; Harrison et al., 2009, 2015; Diniega et al., 2010; Dundas et al., 2010, 2012, 2015, 2017) with some activity constrained temporally to occur in the coldest times of year (winter and spring; Harrison et al., 2009; Diniega et al., 2010; Dundas et al., 2010, 2012, 2015, 2017), suggesting that surficial frosts that form seasonally and diurnally might play a key role in this present-day activity. Frost formation is highly dependent on two key factors: (1) surface temperature and (2) the atmospheric partial pressure of the condensable gas (Kieffer, 1968). The Martian atmosphere is primarily composed of CO2and CO2 frost formation is not diffusion-limited (unlike H2O). Hence, for temperatures less than the local frost point of CO2, (~ 148 K at a surface pressure of 610 Pa) frost is always present (Piqueux et al., 2016). Typically, these frosts are dominated volumetrically by CO2, although small amounts of H2O frosts are also present, and typically precede CO2 frost deposition (due to water’s higher condensation temperature (Schorghofer and Edgett, 2006)). Here we use the Thermal Emission Imaging System (THEMIS) and the Thermal Emission Spectrometer (TES) onboard Mars Odyssey and Mars Global Surveyor, respectively, to explore the global spatial and temporal variation of temperatures conducive to CO2 and H2O frost formation on Mars, and assess their distribution with gully landforms. CO2 frost temperatures are observed at all latitudes and are strongly correlated with dusty, low thermal inertia regions near the equator. Modeling results suggest that frost formation is restricted to the surface due to near-surface radiative effects. About 49 % of all gullies lie within THEMIS frost framelets. In terms of active gullies, 54 % of active gullies lie within THEMIS framelets, with 14.3% in the north and 54% in the south.
Relatively small amounts of H2O frost (~ 10–100 μm) are also likely to form diurnally and seasonally. The global H2O frost point distribution follows water vapor column abundance closely, with a weak correlation with local surface pressure. There is a strong hemispherical dependence on the frost point temperature—with the northern hemisphere having a higher frost point (in general) than the southern hemisphere—likely due to elevation differences. Unlike the distribution of CO2 frost temperatures, there is little to no correlation with surface thermophysical properties (thermal inertia, albedo, etc.). Modeling suggests H2O frosts can briefly attain melting point temperatures for a few hours if present under thin layers of dust, and can perhaps play a role in present-day equatorial mass-wasting events (eg. McEwen et al., 2018).
Based on seasonal constraints on gully activity timing, preliminary field studies, frost presence from visible imagery, spectral data and thermal data (this work), it is likely that most present-day activity can be explained by frosts (primarily CO2, and possibly H2O). We predict that the conditions necessary for significant present-day activity include formation of sufficient amounts of frost (> ~20 cm/year) within loose, unconsolidated sediments (I < ~ 350) on available slopes. However, whether or not present-day gully activity is representative of gully formation as a whole is still open to debate, and the details on CO2 frost-induced gully formation mechanisms remain unresolved.

Contributors

Agent

Created

Date Created
2019-05

134620-Thumbnail Image.png

Detrital-Zircon and Paleontological Constraints on Correlations of Pennsylvanian-Permian Rocks Near Sedona, Arizona

Description

This research focuses on a geologic controversy regarding the stratigraphic position of the Hermit Formation outside of the Grand Canyon, specifically in Sedona, Arizona. The goal of this research is to provide additional constraints on this dispute by pinpointing the

This research focuses on a geologic controversy regarding the stratigraphic position of the Hermit Formation outside of the Grand Canyon, specifically in Sedona, Arizona. The goal of this research is to provide additional constraints on this dispute by pinpointing the transition to the Hermit Formation in Sedona, if possible. To accomplish this, we use field observations and detrital zircon dating techniques to compare data we collected in Sedona with data previously published for the Grand Canyon. Fossil evidence in Sedona and near Payson, Arizona is also used to aid correlation. Starting from the Grand Canyon, the Hermit Formation pinches out to the southeast and, hypothetically obstructed by the Sedona Arch, does not reach Sedona. Detrital zircon data show similar age distributions between the Grand Canyon and Sedona rock units, but the results are not strong enough to confidently correlate units between these two localities. The data collected for this study suggest that if the Hermit Formation is present in Sedona, it is limited to higher up in the section as opposed to occupying the middle portion of the section as is currently interpreted. To determine with greater accuracy whether the Hermit Formation does exist higher in the section of Sedona, more detrital zircons should be collected and analyzed from the part of the section that yielded a relative increase in young zircons aged 200-600 Ma.

Contributors

Agent

Created

Date Created
2017-05

135208-Thumbnail Image.png

VOLUME APPROXIMATIONS OF LASER PIT ABLATIONS

Description

Radiometric dating estimates the age of rocks by comparing the concentration of a decaying radioactive isotope to the concentrations of the decay byproducts. Radiometric dating has been instrumental in the calculation of the Earth's age, the Moon's age, and the

Radiometric dating estimates the age of rocks by comparing the concentration of a decaying radioactive isotope to the concentrations of the decay byproducts. Radiometric dating has been instrumental in the calculation of the Earth's age, the Moon's age, and the age of our solar system. Geochronologists in the School of Earth and Space Exploration at ASU use radiometric dating extensively in their research, and have very specific procedures, hardware, and software to perform the dating calculations. Researchers use lasers to drill small holes, or ablations, in rock faces, collect the masses of various isotopes using a mass spectrometer, and scan the pit with an interferometer, which records the z heights of the pit on an x-y grid. This scan is then processed by custom-made software to determine the volume of the pit, which then is used along with the isotope masses and known decay rates to determine the age of the rock. My research has been focused on improving this volume calculation through computational geometry methods of surface reconstruction. During the process, I created an web application that reads interferometer scans, reconstructs a surface from those scans with Poisson reconstruction, renders the surface in the browser, and calculates the volume of the pit based on parameters provided by the researcher. The scans are stored in a central cloud datastore for future analysis, allowing the researchers in the geochronology community to collaborate together on scans from various rocks in their individual labs. The result of the project has been a complete and functioning application that is accessible to any researcher and reproducible from any computer. The 3D representation of the scan data allows researchers to easily understand the topology of the pit ablation and determine early on whether the measurements of the interferometer are trustworthy for the particular ablation. The volume calculation by the new software also reduces the variability in the volume calculation, which hopefully indicates the process is removing noise from the scan data and performing volume calculations on a more realistic representation of the actual ablation. In the future, this research will be used as the groundwork for more robust testing and closer approximations through implementation of different reconstruction algorithms. As the project grows and becomes more usable, hopefully there will be adoption in the community and it will become a reproducible standard for geochronologists performing radiometric dating.

Contributors

Agent

Created

Date Created
2016-05

137072-Thumbnail Image.png

Using InSAR to Investigate Injection-Induced Deformation and Seismicity in Timpson, Texas

Description

Hydraulic fracturing, or fracking, has become a common practice in United States oil fields for enhancing their productivity. Among the concerns regarding fracking, however, is the possibility that it could trigger shallow earthquakes. The brine that results from fracking is

Hydraulic fracturing, or fracking, has become a common practice in United States oil fields for enhancing their productivity. Among the concerns regarding fracking, however, is the possibility that it could trigger shallow earthquakes. The brine that results from fracking is injected into the subsurface for disposal. This brine causes a pore pressure gradient that is commonly believed to trigger failure along critically stressed subsurface faults. In Timpson, a small city in eastern Texas, earthquakes have become much more common since two injection wells were installed in 2007. 16 events of M_W > 2 have been detected since 2008 and are believed to be associated with failure along a subsurface fault. Applying interferometric synthetic aperture radar, we analyzed 3 sets of SAR images from the Advanced Land Observing Satellite (ALOS) from May 2007 to December 2010. Using these data sets, XX interferograms were generated. From these interferograms, it was possible to determine the spatial and temporal evolution of the crustal deformation in the line-of-sight of the satellite. The results show strong evidence of uplift in the region adjacent to the injection wells. While previous studies have established a strong connection between fluid injection and increased seismicity, this is to our knowledge the first observed case of crustal deformation that has been observed as a result of hydraulic fracturing fluid disposal.

Contributors

Created

Date Created
2014-05

(U-Th)/He Geochronology of Grains in Baked Zones to date Volcanism

Description

Many radioactive decay schemes employed in geochronology prove imprecise when placing accurate age constraints on young basalt flows. The (U-Th)/He systematics of detrital zircon and apatite within baked zones is examined as an alternative. Parent-daughter radioisotope ratios within grains from

Many radioactive decay schemes employed in geochronology prove imprecise when placing accurate age constraints on young basalt flows. The (U-Th)/He systematics of detrital zircon and apatite within baked zones is examined as an alternative. Parent-daughter radioisotope ratios within grains from baked zones can completely reset if subjected to temperatures high enough and long enough for bulk diffusive loss. Presented here is the reproducibility of initial attempts to date flows by examining the (U-Th)/He geochronology of grains within baked zones. We examine grains from two localities within the San Francisco Volcanic Field and the Mormon Volcanic Field in northern Arizona. Thirteen zircon and apatite grains yielded from locality 2 collected from the uppermost 10 cm beneath a 7m flow of a basalt yield an apparent age of 4.39 ± 0.28 Ma (2σ), which is within range of published Middle Pliocene ages. Twenty-nine grains from locality 1 collected from the uppermost 20 cm beneath a 2 to 5m flow yield dates ranging from 0.47 ± 0.02 Ma to 892.77 ± 27.02 Ma, indicating the grains were partially reset or not reset at all. The degree to which grains are reset depends on a variety of factors detailed in this study. With these factors accounted for however, our study confirms application of this indirect dating technique is a useful tool for dating basaltic flows.

Contributors

Agent

Created

Date Created
2014-05

148027-Thumbnail Image.png

Landslide Blocks within Miocene Sedimentary Rocks of Papago Park

Description

Papago Park in Tempe, Arizona (USA) is host to several buttes composed of landslide breccias. The focus of this thesis is a butte called “Contact Hill,” which is composed of metarhyolitic debris flows, granitic debris flows, and Barnes Butte Breccia.

Papago Park in Tempe, Arizona (USA) is host to several buttes composed of landslide breccias. The focus of this thesis is a butte called “Contact Hill,” which is composed of metarhyolitic debris flows, granitic debris flows, and Barnes Butte Breccia. The Barnes Butte Breccia can be broken down into several different compositional categories that can be dated based on their relative ages. The depositional timeline of these rocks is explored through their mineral and physical properties. The rhyolitic debris flow is massively bedded and dips at 26° to the southeast. The granitic debris flow is not bedded and exhibits a mixture of granite clasts of different grain sizes. In thin section analysis, five mineral types were identified: opaque inclusions, white quartz, anhedral and subhedral biotite, yellow stained K-feldspar, and gray plagioclase. It is hypothesized that regional stretching and compression of the crust, accompanied with magmatism, helped bring the metarhyolite and granite to the surface. Domino-like fault blocks caused large brecciation, and collapse of a nearby quartzite and granite mountain helped create the Barnes Butte Breccia: a combination of quartzite, metarhyolite, and granite clasts. Evidence of Papago Park’s ancient terrestrial history is seen in metarhyolite clasts containing sand grains. These geologic events, in addition to erosion, are responsible for Papago Park’s unique appearance today.

Contributors

Agent

Created

Date Created
2021-05

149701-Thumbnail Image.png

Eye-tracking investigations exploring how students learn geology from photographs and The structural setting of hydrothermal gold deposits in the San Antonio area, B.C.S., MX

Description

Geoscience educators commonly teach geology by projecting a photograph in front of the class. Geologic photographs often contain animals, people, and inanimate objects that help convey the scale of features in the photograph. Although scale items seem innocuous to instructors

Geoscience educators commonly teach geology by projecting a photograph in front of the class. Geologic photographs often contain animals, people, and inanimate objects that help convey the scale of features in the photograph. Although scale items seem innocuous to instructors and other experts, the presence of such items is distracting and has a profound effect on student learning behavior. To evaluate how students visually interact with distracting scale items in photographs and to determine if cueing or signaling is an effective means to direct students to pertinent information, students were eye tracked while looking at geologically-rich photographs. Eye-tracking data revealed that learners primarily looked at the center of an image, focused on faces of both humans and animals if they were present, and repeatedly returned to looking at the scale item (distractor) for the duration an image was displayed. The presence of a distractor caused learners to look at less of an image than when a distractor was not present. Learners who received signaling tended to look at the distractor less, look at the geology more, and surveyed more of the photograph than learners who did not receive signaling. The San Antonio area in the southern part of the Baja California Peninsula is host to hydrothermal gold deposits. A field study, including drill-core analysis and detailed geologic mapping, was conducted to determine the types of mineralization present, the types of structures present, and the relationship between the two. This investigation revealed that two phases of mineralization have occurred in the area; the first is hydrothermal deposition of gold associated with sulfide deposits and the second is oxidation of sulfides to hematite, goethite, and jarosite. Mineralization varies as a function of depth, whereas sulfides occurring at depth, while minerals indicative of oxidation are limited to shallow depths. A structural analysis revealed that the oldest structures in the study area include low-grade to medium-grade metamorphic foliation and ductile mylonitic shear zones overprinted by brittle-ductile mylonitic fabrics, which were later overprinted by brittle deformation. Both primary and secondary mineralization in the area is restricted to the later brittle features. Alteration-bearing structures have an average NNW strike consistent with northeast-southwest-directed extension, whereas unaltered structures have an average NNE strike consistent with more recent northwest-southeast-directed extension.

Contributors

Agent

Created

Date Created
2011