Matching Items (18)
Filtering by

Clear all filters

152165-Thumbnail Image.png
Description
Surgery as a profession requires significant training to improve both clinical decision making and psychomotor proficiency. In the medical knowledge domain, tools have been developed, validated, and accepted for evaluation of surgeons' competencies. However, assessment of the psychomotor skills still relies on the Halstedian model of apprenticeship, wherein surgeons are

Surgery as a profession requires significant training to improve both clinical decision making and psychomotor proficiency. In the medical knowledge domain, tools have been developed, validated, and accepted for evaluation of surgeons' competencies. However, assessment of the psychomotor skills still relies on the Halstedian model of apprenticeship, wherein surgeons are observed during residency for judgment of their skills. Although the value of this method of skills assessment cannot be ignored, novel methodologies of objective skills assessment need to be designed, developed, and evaluated that augment the traditional approach. Several sensor-based systems have been developed to measure a user's skill quantitatively, but use of sensors could interfere with skill execution and thus limit the potential for evaluating real-life surgery. However, having a method to judge skills automatically in real-life conditions should be the ultimate goal, since only with such features that a system would be widely adopted. This research proposes a novel video-based approach for observing surgeons' hand and surgical tool movements in minimally invasive surgical training exercises as well as during laparoscopic surgery. Because our system does not require surgeons to wear special sensors, it has the distinct advantage over alternatives of offering skills assessment in both learning and real-life environments. The system automatically detects major skill-measuring features from surgical task videos using a computing system composed of a series of computer vision algorithms and provides on-screen real-time performance feedback for more efficient skill learning. Finally, the machine-learning approach is used to develop an observer-independent composite scoring model through objective and quantitative measurement of surgical skills. To increase effectiveness and usability of the developed system, it is integrated with a cloud-based tool, which automatically assesses surgical videos upload to the cloud.
ContributorsIslam, Gazi (Author) / Li, Baoxin (Thesis advisor) / Liang, Jianming (Thesis advisor) / Dinu, Valentin (Committee member) / Greenes, Robert (Committee member) / Smith, Marshall (Committee member) / Kahol, Kanav (Committee member) / Patel, Vimla L. (Committee member) / Arizona State University (Publisher)
Created2013
152768-Thumbnail Image.png
Description
In a healthcare setting, the Sterile Processing Department (SPD) provides ancillary services to the Operating Room (OR), Emergency Room, Labor & Delivery, and off-site clinics. SPD's function is to reprocess reusable surgical instruments and return them to their home departments. The management of surgical instruments and medical devices can impact

In a healthcare setting, the Sterile Processing Department (SPD) provides ancillary services to the Operating Room (OR), Emergency Room, Labor & Delivery, and off-site clinics. SPD's function is to reprocess reusable surgical instruments and return them to their home departments. The management of surgical instruments and medical devices can impact patient safety and hospital revenue. Any time instrumentation or devices are not available or are not fit for use, patient safety and revenue can be negatively impacted. One step of the instrument reprocessing cycle is sterilization. Steam sterilization is the sterilization method used for the majority of surgical instruments and is preferred to immediate use steam sterilization (IUSS) because terminally sterilized items can be stored until needed. IUSS Items must be used promptly and cannot be stored for later use. IUSS is intended for emergency situations and not as regular course of action. Unfortunately, IUSS is used to compensate for inadequate inventory levels, scheduling conflicts, and miscommunications. If IUSS is viewed as an adverse event, then monitoring IUSS incidences can help healthcare organizations meet patient safety goals and financial goals along with aiding in process improvement efforts. This work recommends statistical process control methods to IUSS incidents and illustrates the use of control charts for IUSS occurrences through a case study and analysis of the control charts for data from a health care provider. Furthermore, this work considers the application of data mining methods to IUSS occurrences and presents a representative example of data mining to the IUSS occurrences. This extends the application of statistical process control and data mining in healthcare applications.
ContributorsWeart, Gail (Author) / Runger, George C. (Thesis advisor) / Li, Jing (Committee member) / Shunk, Dan (Committee member) / Arizona State University (Publisher)
Created2014
152833-Thumbnail Image.png
Description
In many fields one needs to build predictive models for a set of related machine learning tasks, such as information retrieval, computer vision and biomedical informatics. Traditionally these tasks are treated independently and the inference is done separately for each task, which ignores important connections among the tasks. Multi-task learning

In many fields one needs to build predictive models for a set of related machine learning tasks, such as information retrieval, computer vision and biomedical informatics. Traditionally these tasks are treated independently and the inference is done separately for each task, which ignores important connections among the tasks. Multi-task learning aims at simultaneously building models for all tasks in order to improve the generalization performance, leveraging inherent relatedness of these tasks. In this thesis, I firstly propose a clustered multi-task learning (CMTL) formulation, which simultaneously learns task models and performs task clustering. I provide theoretical analysis to establish the equivalence between the CMTL formulation and the alternating structure optimization, which learns a shared low-dimensional hypothesis space for different tasks. Then I present two real-world biomedical informatics applications which can benefit from multi-task learning. In the first application, I study the disease progression problem and present multi-task learning formulations for disease progression. In the formulations, the prediction at each point is a regression task and multiple tasks at different time points are learned simultaneously, leveraging the temporal smoothness among the tasks. The proposed formulations have been tested extensively on predicting the progression of the Alzheimer's disease, and experimental results demonstrate the effectiveness of the proposed models. In the second application, I present a novel data-driven framework for densifying the electronic medical records (EMR) to overcome the sparsity problem in predictive modeling using EMR. The densification of each patient is a learning task, and the proposed algorithm simultaneously densify all patients. As such, the densification of one patient leverages useful information from other patients.
ContributorsZhou, Jiayu (Author) / Ye, Jieping (Thesis advisor) / Mittelmann, Hans (Committee member) / Li, Baoxin (Committee member) / Wang, Yalin (Committee member) / Arizona State University (Publisher)
Created2014
Description
In many classication problems data samples cannot be collected easily, example in drug trials, biological experiments and study on cancer patients. In many situations the data set size is small and there are many outliers. When classifying such data, example cancer vs normal patients the consequences of mis-classication are probably

In many classication problems data samples cannot be collected easily, example in drug trials, biological experiments and study on cancer patients. In many situations the data set size is small and there are many outliers. When classifying such data, example cancer vs normal patients the consequences of mis-classication are probably more important than any other data type, because the data point could be a cancer patient or the classication decision could help determine what gene might be over expressed and perhaps a cause of cancer. These mis-classications are typically higher in the presence of outlier data points. The aim of this thesis is to develop a maximum margin classier that is suited to address the lack of robustness of discriminant based classiers (like the Support Vector Machine (SVM)) to noise and outliers. The underlying notion is to adopt and develop a natural loss function that is more robust to outliers and more representative of the true loss function of the data. It is demonstrated experimentally that SVM's are indeed susceptible to outliers and that the new classier developed, here coined as Robust-SVM (RSVM), is superior to all studied classier on the synthetic datasets. It is superior to the SVM in both the synthetic and experimental data from biomedical studies and is competent to a classier derived on similar lines when real life data examples are considered.
ContributorsGupta, Sidharth (Author) / Kim, Seungchan (Thesis advisor) / Welfert, Bruno (Committee member) / Li, Baoxin (Committee member) / Arizona State University (Publisher)
Created2011
151203-Thumbnail Image.png
Description
This dissertation presents methods for the evaluation of ocular surface protection during natural blink function. The evaluation of ocular surface protection is especially important in the diagnosis of dry eye and the evaluation of dry eye severity in clinical trials. Dry eye is a highly prevalent disease affecting vast numbers

This dissertation presents methods for the evaluation of ocular surface protection during natural blink function. The evaluation of ocular surface protection is especially important in the diagnosis of dry eye and the evaluation of dry eye severity in clinical trials. Dry eye is a highly prevalent disease affecting vast numbers (between 11% and 22%) of an aging population. There is only one approved therapy with limited efficacy, which results in a huge unmet need. The reason so few drugs have reached approval is a lack of a recognized therapeutic pathway with reproducible endpoints. While the interplay between blink function and ocular surface protection has long been recognized, all currently used evaluation techniques have addressed blink function in isolation from tear film stability, the gold standard of which is Tear Film Break-Up Time (TFBUT). In the first part of this research a manual technique of calculating ocular surface protection during natural blink function through the use of video analysis is developed and evaluated for it's ability to differentiate between dry eye and normal subjects, the results are compared with that of TFBUT. In the second part of this research the technique is improved in precision and automated through the use of video analysis algorithms. This software, called the OPI 2.0 System, is evaluated for accuracy and precision, and comparisons are made between the OPI 2.0 System and other currently recognized dry eye diagnostic techniques (e.g. TFBUT). In the third part of this research the OPI 2.0 System is deployed for use in the evaluation of subjects before, immediately after and 30 minutes after exposure to a controlled adverse environment (CAE), once again the results are compared and contrasted against commonly used dry eye endpoints. The results demonstrate that the evaluation of ocular surface protection using the OPI 2.0 System offers superior accuracy to the current standard, TFBUT.
ContributorsAbelson, Richard (Author) / Montgomery, Douglas C. (Thesis advisor) / Borror, Connie (Committee member) / Shunk, Dan (Committee member) / Pan, Rong (Committee member) / Arizona State University (Publisher)
Created2012
155994-Thumbnail Image.png
Description
Rewired biological pathways and/or rewired microRNA (miRNA)-mRNA interactions might also influence the activity of biological pathways. Here, rewired biological pathways is defined as differential (rewiring) effect of genes on the topology of biological pathways between controls and cases. Similarly, rewired miRNA-mRNA interactions are defined as the differential (rewiring) effects of

Rewired biological pathways and/or rewired microRNA (miRNA)-mRNA interactions might also influence the activity of biological pathways. Here, rewired biological pathways is defined as differential (rewiring) effect of genes on the topology of biological pathways between controls and cases. Similarly, rewired miRNA-mRNA interactions are defined as the differential (rewiring) effects of miRNAs on the topology of biological pathways between controls and cases. In the dissertation, it is discussed that how rewired biological pathways (Chapter 1) and/or rewired miRNA-mRNA interactions (Chapter 2) aberrantly influence the activity of biological pathways and their association with disease.

This dissertation proposes two PageRank-based analytical methods, Pathways of Topological Rank Analysis (PoTRA) and miR2Pathway, discussed in Chapter 1 and Chapter 2, respectively. PoTRA focuses on detecting pathways with an altered number of hub genes in corresponding pathways between two phenotypes. The basis for PoTRA is that the loss of connectivity is a common topological trait of cancer networks, as well as the prior knowledge that a normal biological network is a scale-free network whose degree distribution follows a power law where a small number of nodes are hubs and a large number of nodes are non-hubs. However, from normal to cancer, the process of the network losing connectivity might be the process of disrupting the scale-free structure of the network, namely, the number of hub genes might be altered in cancer compared to that in normal samples. Hence, it is hypothesized that if the number of hub genes is different in a pathway between normal and cancer, this pathway might be involved in cancer. MiR2Pathway focuses on quantifying the differential effects of miRNAs on the activity of a biological pathway when miRNA-mRNA connections are altered from normal to disease and rank disease risk of rewired miRNA-mediated biological pathways. This dissertation explores how rewired gene-gene interactions and rewired miRNA-mRNA interactions lead to aberrant activity of biological pathways, and rank pathways for their disease risk. The two methods proposed here can be used to complement existing genomics analysis methods to facilitate the study of biological mechanisms behind disease at the systems-level.
ContributorsLi, Chaoxing (Author) / Dinu, Valentin (Thesis advisor) / Kuang, Yang (Thesis advisor) / Liu, Li (Committee member) / Wang, Xiao (Committee member) / Arizona State University (Publisher)
Created2017
Description
Circular RNAs (circRNAs) are a class of endogenous, non-coding RNAs that are formed when exons back-splice to each other and represent a new area of transcriptomics research. Numerous RNA sequencing (RNAseq) studies since 2012 have revealed that circRNAs are pervasively expressed in eukaryotes, especially in the mammalian brain. While their

Circular RNAs (circRNAs) are a class of endogenous, non-coding RNAs that are formed when exons back-splice to each other and represent a new area of transcriptomics research. Numerous RNA sequencing (RNAseq) studies since 2012 have revealed that circRNAs are pervasively expressed in eukaryotes, especially in the mammalian brain. While their functional role and impact remains to be clarified, circRNAs have been found to regulate micro-RNAs (miRNAs) as well as parental gene transcription and may thus have key roles in transcriptional regulation. Although circRNAs have continued to gain attention, our understanding of their expression in a cell-, tissue- , and brain region-specific context remains limited. Further, computational algorithms produce varied results in terms of what circRNAs are detected. This thesis aims to advance current knowledge of circRNA expression in a region specific context focusing on the human brain, as well as address computational challenges.

The overarching goal of my research unfolds over three aims: (i) evaluating circRNAs and their predicted impact on transcriptional regulatory networks in cell-specific RNAseq data; (ii) developing a novel solution for de novo detection of full length circRNAs as well as in silico validation of selected circRNA junctions using assembly; and (iii) application of these assembly based detection and validation workflows, and integrating existing tools, to systematically identify and characterize circRNAs in functionally distinct human brain regions. To this end, I have developed novel bioinformatics workflows that are applicable to non-polyA selected RNAseq datasets and can be used to characterize circRNA expression across various sample types and diseases. Further, I establish a reference dataset of circRNA expression profiles and regulatory networks in a brain region-specific manner. This resource along with existing databases such as circBase will be invaluable in advancing circRNA research as well as improving our understanding of their role in transcriptional regulation and various neurological conditions.
ContributorsSekar, Shobana (Author) / Liang, Winnie S (Thesis advisor) / Dinu, Valentin (Thesis advisor) / Craig, David (Committee member) / Liu, Li (Committee member) / Arizona State University (Publisher)
Created2018
154703-Thumbnail Image.png
Description
Cardiovascular disease (CVD) is the leading cause of mortality yet largely preventable, but the key to prevention is to identify at-risk individuals before adverse events. For predicting individual CVD risk, carotid intima-media thickness (CIMT), a noninvasive ultrasound method, has proven to be valuable, offering several advantages over CT coronary artery

Cardiovascular disease (CVD) is the leading cause of mortality yet largely preventable, but the key to prevention is to identify at-risk individuals before adverse events. For predicting individual CVD risk, carotid intima-media thickness (CIMT), a noninvasive ultrasound method, has proven to be valuable, offering several advantages over CT coronary artery calcium score. However, each CIMT examination includes several ultrasound videos, and interpreting each of these CIMT videos involves three operations: (1) select three enddiastolic ultrasound frames (EUF) in the video, (2) localize a region of interest (ROI) in each selected frame, and (3) trace the lumen-intima interface and the media-adventitia interface in each ROI to measure CIMT. These operations are tedious, laborious, and time consuming, a serious limitation that hinders the widespread utilization of CIMT in clinical practice. To overcome this limitation, this paper presents a new system to automate CIMT video interpretation. Our extensive experiments demonstrate that the suggested system significantly outperforms the state-of-the-art methods. The superior performance is attributable to our unified framework based on convolutional neural networks (CNNs) coupled with our informative image representation and effective post-processing of the CNN outputs, which are uniquely designed for each of the above three operations.
ContributorsShin, Jaeyul (Author) / Liang, Jianming (Thesis advisor) / Maciejewski, Ross (Committee member) / Li, Baoxin (Committee member) / Arizona State University (Publisher)
Created2016
Description
Major Depression, clinically called Major Depressive Disorder, is a mood disorder that affects about one eighth of population in US and is projected to be the second leading cause of disability in the world by the year 2020. Recent advances in biotechnology have enabled us to

Major Depression, clinically called Major Depressive Disorder, is a mood disorder that affects about one eighth of population in US and is projected to be the second leading cause of disability in the world by the year 2020. Recent advances in biotechnology have enabled us to collect a great variety of data which could potentially offer us a deeper understanding of the disorder as well as advancing personalized medicine.

This dissertation focuses on developing methods for three different aspects of predictive analytics related to the disorder: automatic diagnosis, prognosis, and prediction of long-term treatment outcome. The data used for each task have their specific characteristics and demonstrate unique problems. Automatic diagnosis of melancholic depression is made on the basis of metabolic profiles and micro-array gene expression profiles where the presence of missing values and strong empirical correlation between the variables is not unusual. To deal with these problems, a method of generating a representative set of features is proposed. Prognosis is made on data collected from rating scales and questionnaires which consist mainly of categorical and ordinal variables and thus favor decision tree based predictive models. Decision tree models are known for the notorious problem of overfitting. A decision tree pruning method that overcomes the shortcomings of a greedy nature and reliance on heuristics inherent in traditional decision tree pruning approaches is proposed. The method is further extended to prune Gradient Boosting Decision Tree and tested on the task of prognosis of treatment outcome. Follow-up studies evaluating the long-term effect of the treatments on patients usually measure patients' depressive symptom severity monthly, resulting in the actual time of relapse upper bounded by the observed time of relapse. To resolve such uncertainty in response, a general loss function where the hypothesis could take different forms is proposed to predict the risk of relapse in situations where only an interval for time of relapse can be derived from the observed data.
ContributorsNie, Zhi (Author) / Ye, Jieping (Thesis advisor) / He, Jingrui (Thesis advisor) / Li, Baoxin (Committee member) / Xue, Guoliang (Committee member) / Li, Jing (Committee member) / Arizona State University (Publisher)
Created2017
149307-Thumbnail Image.png
Description
Continuous advancements in biomedical research have resulted in the production of vast amounts of scientific data and literature discussing them. The ultimate goal of computational biology is to translate these large amounts of data into actual knowledge of the complex biological processes and accurate life science models. The ability to

Continuous advancements in biomedical research have resulted in the production of vast amounts of scientific data and literature discussing them. The ultimate goal of computational biology is to translate these large amounts of data into actual knowledge of the complex biological processes and accurate life science models. The ability to rapidly and effectively survey the literature is necessary for the creation of large scale models of the relationships among biomedical entities as well as hypothesis generation to guide biomedical research. To reduce the effort and time spent in performing these activities, an intelligent search system is required. Even though many systems aid in navigating through this wide collection of documents, the vastness and depth of this information overload can be overwhelming. An automated extraction system coupled with a cognitive search and navigation service over these document collections would not only save time and effort, but also facilitate discovery of the unknown information implicitly conveyed in the texts. This thesis presents the different approaches used for large scale biomedical named entity recognition, and the challenges faced in each. It also proposes BioEve: an integrative framework to fuse a faceted search with information extraction to provide a search service that addresses the user's desire for "completeness" of the query results, not just the top-ranked ones. This information extraction system enables discovery of important semantic relationships between entities such as genes, diseases, drugs, and cell lines and events from biomedical text on MEDLINE, which is the largest publicly available database of the world's biomedical journal literature. It is an innovative search and discovery service that makes it easier to search
avigate and discover knowledge hidden in life sciences literature. To demonstrate the utility of this system, this thesis also details a prototype enterprise quality search and discovery service that helps researchers with a guided step-by-step query refinement, by suggesting concepts enriched in intermediate results, and thereby facilitating the "discover more as you search" paradigm.
ContributorsKanwar, Pradeep (Author) / Davulcu, Hasan (Thesis advisor) / Dinu, Valentin (Committee member) / Li, Baoxin (Committee member) / Arizona State University (Publisher)
Created2010