Matching Items (14)
Filtering by

Clear all filters

151939-Thumbnail Image.png
Description
Random peptide microarrays are a powerful tool for both the treatment and diagnostics of infectious diseases. On the treatment side, selected random peptides on the microarray have either binding or lytic potency against certain pathogens cells, thus they can be synthesized into new antimicrobial agents, denoted as synbodies (synthetic antibodies).

Random peptide microarrays are a powerful tool for both the treatment and diagnostics of infectious diseases. On the treatment side, selected random peptides on the microarray have either binding or lytic potency against certain pathogens cells, thus they can be synthesized into new antimicrobial agents, denoted as synbodies (synthetic antibodies). On the diagnostic side, serum containing specific infection-related antibodies create unique and distinct "pathogen-immunosignatures" on the random peptide microarray distinct from the healthy control serum, and this different mode of binding can be used as a more precise measurement than traditional ELISA tests. My thesis project is separated into these two parts: the first part falls into the treatment side and the second one focuses on the diagnostic side. My first chapter shows that a substitution amino acid peptide library helps to improve the activity of a recently reported synthetic antimicrobial peptide selected by the random peptide microarray. By substituting one or two amino acids of the original lead peptide, the new substitutes show changed hemolytic effects against mouse red blood cells and changed potency against two pathogens: Staphylococcus aureus and Pseudomonas aeruginosa. Two new substitutes are then combined together to form the synbody, which shows a significantly antimicrobial potency against Staphylococcus aureus (<0.5uM). In the second chapter, I explore the possibility of using the 10K Ver.2 random peptide microarray to monitor the humoral immune response of dengue. Over 2.5 billion people (40% of the world's population) live in dengue transmitting areas. However, currently there is no efficient dengue treatment or vaccine. Here, with limited dengue patient serum samples, we show that the immunosignature has the potential to not only distinguish the dengue infection from non-infected people, but also the primary dengue infection from the secondary dengue infections, dengue infection from West Nile Virus (WNV) infection, and even between different dengue serotypes. By further bioinformatic analysis, we demonstrate that the significant peptides selected to distinguish dengue infected and normal samples may indicate the epitopes responsible for the immune response.
ContributorsWang, Xiao (Author) / Johnston, Stephen Albert (Thesis advisor) / Blattman, Joseph (Committee member) / Arntzen, Charles (Committee member) / Arizona State University (Publisher)
Created2013
155994-Thumbnail Image.png
Description
Rewired biological pathways and/or rewired microRNA (miRNA)-mRNA interactions might also influence the activity of biological pathways. Here, rewired biological pathways is defined as differential (rewiring) effect of genes on the topology of biological pathways between controls and cases. Similarly, rewired miRNA-mRNA interactions are defined as the differential (rewiring) effects of

Rewired biological pathways and/or rewired microRNA (miRNA)-mRNA interactions might also influence the activity of biological pathways. Here, rewired biological pathways is defined as differential (rewiring) effect of genes on the topology of biological pathways between controls and cases. Similarly, rewired miRNA-mRNA interactions are defined as the differential (rewiring) effects of miRNAs on the topology of biological pathways between controls and cases. In the dissertation, it is discussed that how rewired biological pathways (Chapter 1) and/or rewired miRNA-mRNA interactions (Chapter 2) aberrantly influence the activity of biological pathways and their association with disease.

This dissertation proposes two PageRank-based analytical methods, Pathways of Topological Rank Analysis (PoTRA) and miR2Pathway, discussed in Chapter 1 and Chapter 2, respectively. PoTRA focuses on detecting pathways with an altered number of hub genes in corresponding pathways between two phenotypes. The basis for PoTRA is that the loss of connectivity is a common topological trait of cancer networks, as well as the prior knowledge that a normal biological network is a scale-free network whose degree distribution follows a power law where a small number of nodes are hubs and a large number of nodes are non-hubs. However, from normal to cancer, the process of the network losing connectivity might be the process of disrupting the scale-free structure of the network, namely, the number of hub genes might be altered in cancer compared to that in normal samples. Hence, it is hypothesized that if the number of hub genes is different in a pathway between normal and cancer, this pathway might be involved in cancer. MiR2Pathway focuses on quantifying the differential effects of miRNAs on the activity of a biological pathway when miRNA-mRNA connections are altered from normal to disease and rank disease risk of rewired miRNA-mediated biological pathways. This dissertation explores how rewired gene-gene interactions and rewired miRNA-mRNA interactions lead to aberrant activity of biological pathways, and rank pathways for their disease risk. The two methods proposed here can be used to complement existing genomics analysis methods to facilitate the study of biological mechanisms behind disease at the systems-level.
ContributorsLi, Chaoxing (Author) / Dinu, Valentin (Thesis advisor) / Kuang, Yang (Thesis advisor) / Liu, Li (Committee member) / Wang, Xiao (Committee member) / Arizona State University (Publisher)
Created2017
156404-Thumbnail Image.png
Description
Recombinases are powerful tools for genome engineering and synthetic biology, however recombinases are limited by a lack of user-programmability and often require complex directed-evolution experiments to retarget specificity. Conversely, CRISPR systems have extreme versatility yet can induce off-target mutations and karyotypic destabilization. To address these constraints we developed an RNA-guided

Recombinases are powerful tools for genome engineering and synthetic biology, however recombinases are limited by a lack of user-programmability and often require complex directed-evolution experiments to retarget specificity. Conversely, CRISPR systems have extreme versatility yet can induce off-target mutations and karyotypic destabilization. To address these constraints we developed an RNA-guided recombinase protein by fusing a hyperactive mutant resolvase from transposon TN3 to catalytically inactive Cas9. We validated recombinase-Cas9 (rCas9) function in model eukaryote Saccharomyces cerevisiae using a chromosomally integrated fluorescent reporter. Moreover, we demonstrated cooperative targeting by CRISPR RNAs at spacings of 22 or 40bps is necessary for directing recombination. Using PCR and Sanger sequencing, we confirmed rCas9 targets DNA recombination. With further development we envision rCas9 becoming useful in the development of RNA-programmed genetic circuitry as well as high-specificity genome engineering.
ContributorsStandage-Beier, Kylie S (Author) / Wang, Xiao (Thesis advisor) / Brafman, David A (Committee member) / Tian, Xiao-jun (Committee member) / Arizona State University (Publisher)
Created2018
156623-Thumbnail Image.png
Description
Synthetic biology is an emerging field which melds genetics, molecular biology, network theory, and mathematical systems to understand, build, and predict gene network behavior. As an engineering discipline, developing a mathematical understanding of the genetic circuits being studied is of fundamental importance. In this dissertation, mathematical concepts for understanding, predicting,

Synthetic biology is an emerging field which melds genetics, molecular biology, network theory, and mathematical systems to understand, build, and predict gene network behavior. As an engineering discipline, developing a mathematical understanding of the genetic circuits being studied is of fundamental importance. In this dissertation, mathematical concepts for understanding, predicting, and controlling gene transcriptional networks are presented and applied to two synthetic gene network contexts. First, this engineering approach is used to improve the function of the guide ribonucleic acid (gRNA)-targeted, dCas9-regulated transcriptional cascades through analysis and targeted modification of the RNA transcript. In so doing, a fluorescent guide RNA (fgRNA) is developed to more clearly observe gRNA dynamics and aid design. It is shown that through careful optimization, RNA Polymerase II (Pol II) driven gRNA transcripts can be strong enough to exhibit measurable cascading behavior, previously only shown in RNA Polymerase III (Pol III) circuits. Second, inherent gene expression noise is used to achieve precise fractional differentiation of a population. Mathematical methods are employed to predict and understand the observed behavior, and metrics for analyzing and quantifying similar differentiation kinetics are presented. Through careful mathematical analysis and simulation, coupled with experimental data, two methods for achieving ratio control are presented, with the optimal schema for any application being dependent on the noisiness of the system under study. Together, these studies push the boundaries of gene network control, with potential applications in stem cell differentiation, therapeutics, and bio-production.
ContributorsMenn, David J (Author) / Wang, Xiao (Thesis advisor) / Kiani, Samira (Committee member) / Haynes, Karmella (Committee member) / Nielsen, David (Committee member) / Marshall, Pamela (Committee member) / Arizona State University (Publisher)
Created2018
154562-Thumbnail Image.png
Description
Synthetic biology is a novel method that reengineers functional parts of natural genes of interest to build new biomolecular devices able to express as designed. There is increasing interest in synthetic biology due to wide potential applications in various fields such as clinics and fuel production. However, there are still

Synthetic biology is a novel method that reengineers functional parts of natural genes of interest to build new biomolecular devices able to express as designed. There is increasing interest in synthetic biology due to wide potential applications in various fields such as clinics and fuel production. However, there are still many challenges in synthetic biology. For example, many natural biological processes are poorly understood, and these could be more thoroughly studied through model synthetic gene networks. Additionally, since synthetic biology applications may have numerous design constraints, more inducer systems should be developed to satisfy different requirements for genetic design.

This thesis covers two topics. First, I attempt to generate stochastic resonance (SR) in a biological system. Synthetic bistable systems were chosen because the inducer range in which they exhibit bistability can satisfy one of the three requirements of SR: a weak periodic force is unable to make the transition between states happen. I synthesized several different bistable systems, including toggle switches and self-activators, to select systems matching another requirement: the system has a clear threshold between the two energy states. Their bistability was verified and characterized. At the same time, I attempted to figure out the third requirement for SR – an effective noise serving as the stochastic force – through one of the most widespread toggles, the mutual inhibition toggle, in both yeast and E. coli. A mathematic model for SR was written and adjusted.

Secondly, I began work on designing a new genetic system capable of responding to pulsed magnetic fields. The operators responding to pulsed magnetic stimuli in the rpoH promoter were extracted and reorganized. Different versions of the rpoH promoter were generated and tested, and their varying responsiveness to magnetic fields was recorded. In order to improve efficiency and produce better operators, a directed evolution method was applied with the help of a CRISPR-dCas9 nicking system. The best performing promoters thus far show a five-fold difference in gene expression between trials with and without the magnetic field.
ContributorsHu, Hao (Author) / Wang, Xiao (Thesis advisor) / Stabenfeldt, Sarah (Committee member) / Brafman, David (Committee member) / Arizona State University (Publisher)
Created2016
155019-Thumbnail Image.png
Description
In species with highly heteromorphic sex chromosomes, the degradation of one of the sex chromosomes can result in unequal gene expression between the sexes (e.g., between XX females and XY males) and between the sex chromosomes and the autosomes. Dosage compensation is a process whereby genes on the sex chromosomes

In species with highly heteromorphic sex chromosomes, the degradation of one of the sex chromosomes can result in unequal gene expression between the sexes (e.g., between XX females and XY males) and between the sex chromosomes and the autosomes. Dosage compensation is a process whereby genes on the sex chromosomes achieve equal gene expression which prevents deleterious side effects from having too much or too little expression of genes on sex chromsomes. The green anole is part of a group of species that recently underwent an adaptive radiation. The green anole has XX/XY sex determination, but the content of the X chromosome and its evolution have not been described. Given its status as a model species, better understanding the green anole genome could reveal insights into other species. Genomic analyses are crucial for a comprehensive picture of sex chromosome differentiation and dosage compensation, in addition to understanding speciation.

In order to address this, multiple comparative genomics and bioinformatics analyses were conducted to elucidate patterns of evolution in the green anole and across multiple anole species. Comparative genomics analyses were used to infer additional X-linked loci in the green anole, RNAseq data from male and female samples were anayzed to quantify patterns of sex-biased gene expression across the genome, and the extent of dosage compensation on the anole X chromosome was characterized, providing evidence that the sex chromosomes in the green anole are dosage compensated.

In addition, X-linked genes have a lower ratio of nonsynonymous to synonymous substitution rates than the autosomes when compared to other Anolis species, and pairwise rates of evolution in genes across the anole genome were analyzed. To conduct this analysis a new pipeline was created for filtering alignments and performing batch calculations for whole genome coding sequences. This pipeline has been made publicly available.
ContributorsRupp, Shawn Michael (Author) / Wilson Sayres, Melissa A (Thesis advisor) / Kusumi, Kenro (Committee member) / DeNardo, Dale (Committee member) / Arizona State University (Publisher)
Created2016
155320-Thumbnail Image.png
Description
Alzheimer’s disease (AD), despite over a century of research, does not have a clearly defined pathogenesis for the sporadic form that makes up the majority of disease incidence. A variety of correlative risk factors have been identified, including the three isoforms of apolipoprotein E (ApoE), a cholesterol transport protein in

Alzheimer’s disease (AD), despite over a century of research, does not have a clearly defined pathogenesis for the sporadic form that makes up the majority of disease incidence. A variety of correlative risk factors have been identified, including the three isoforms of apolipoprotein E (ApoE), a cholesterol transport protein in the central nervous system. ApoE ε3 is the wild-type variant with no effect on risk. ApoE ε2, the protective and most rare variant, reduces risk of developing AD by 40%. ApoE ε4, the risk variant, increases risk by 3.2-fold and 14.9-fold for heterozygous and homozygous representation respectively. Study of these isoforms has been historically complex, but the advent of human induced pluripotent stem cells (hiPSC) provides the means for highly controlled, longitudinal in vitro study. The effect of ApoE variants can be further elucidated using this platform by generating isogenic hiPSC lines through precise genetic modification, the objective of this research. As the difference between alleles is determined by two cytosine-thymine polymorphisms, a specialized CRISPR/Cas9 system for direct base conversion was able to be successfully employed. The base conversion method for transitioning from the ε3 to ε2 allele was first verified using the HEK293 cell line as a model with delivery via electroporation. Following this verification, the transfection method was optimized using two hiPSC lines derived from ε4/ε4 patients, with a lipofection technique ultimately resulting in successful base conversion at the same site verified in the HEK293 model. Additional research performed included characterization of the pre-modification genotype with respect to likely off-target sites and methods of isolating clonal variants.
ContributorsLakers, Mary Frances (Author) / Brafman, David (Thesis advisor) / Haynes, Karmella (Committee member) / Wang, Xiao (Committee member) / Arizona State University (Publisher)
Created2017
171472-Thumbnail Image.png
Description
The advent of CRISPR/Cas9 revolutionized the field of genetic engineering and gave rise to the development of new gene editing tools including prime editing. Prime editing is a versatile gene editing method that mediates precise insertions and deletions and can perform all 12 types of point mutations. In turn, prime

The advent of CRISPR/Cas9 revolutionized the field of genetic engineering and gave rise to the development of new gene editing tools including prime editing. Prime editing is a versatile gene editing method that mediates precise insertions and deletions and can perform all 12 types of point mutations. In turn, prime editing represents great promise in the design of new gene therapies and disease models where editing was previously not possible using current gene editing techniques. Despite advancements in genome modification technologies, parallel enrichment strategies of edited cells remain lagging behind in development. To this end, this project aimed to enhance prime editing using transient reporter for editing enrichment (TREE) technology to develop a method for the rapid generation of clonal isogenic cell lines for disease modeling. TREE uses an engineered BFP variant that upon a C-to-T conversion will convert to GFP after target modification. Using flow cytometry, this BFP-to-GFP conversion assay enables the isolation of edited cell populations via a fluorescent reporter of editing. Prime induced nucleotide engineering using a transient reporter for editing enrichment (PINE-TREE), pairs prime editing with TREE technology to efficiently enrich for prime edited cells. This investigation revealed PINE-TREE as an efficient editing and enrichment method compared to a conventional reporter of transfection (RoT) enrichment strategy. Here, PINE-TREE exhibited a significant increase in editing efficiencies of single nucleotide conversions, small insertions, and small deletions in multiple human cell types. Additionally, PINE-TREE demonstrated improved clonal cell editing efficiency in human induced pluripotent stem cells (hiPSCs). Most notably, PINE-TREE efficiently generated clonal isogenic hiPSCs harboring a mutation in the APOE gene for in vitro modeling of Alzheimer’s Disease. Collectively, results gathered from this study exhibited PINE-TREE as a valuable new tool in genetic engineering to accelerate the generation of clonal isogenic cell lines for applications in developmental biology, disease modeling, and drug screening.
ContributorsKostes, William Warner (Author) / Brafman, David (Thesis advisor) / Jacobs, Bertram (Committee member) / Lapinaite, Audrone (Committee member) / Tian, Xiaojun (Committee member) / Wang, Xiao (Committee member) / Arizona State University (Publisher)
Created2022
155356-Thumbnail Image.png
Description
The past decade has seen a drastic increase in collaboration between Computer Science (CS) and Molecular Biology (MB). Current foci in CS such as deep learning require very large amounts of data, and MB research can often be rapidly advanced by analysis and models from CS. One of the places

The past decade has seen a drastic increase in collaboration between Computer Science (CS) and Molecular Biology (MB). Current foci in CS such as deep learning require very large amounts of data, and MB research can often be rapidly advanced by analysis and models from CS. One of the places where CS could aid MB is during analysis of sequences to find binding sites, prediction of folding patterns of proteins. Maintenance and replication of stem-like cells is possible for long terms as well as differentiation of these cells into various tissue types. These behaviors are possible by controlling the expression of specific genes. These genes then cascade into a network effect by either promoting or repressing downstream gene expression. The expression level of all gene transcripts within a single cell can be analyzed using single cell RNA sequencing (scRNA-seq). A significant portion of noise in scRNA-seq data are results of extrinsic factors and could only be removed by customized scRNA-seq analysis pipeline. scRNA-seq experiments utilize next-gen sequencing to measure genome scale gene expression levels with single cell resolution.

Almost every step during analysis and quantification requires the use of an often empirically determined threshold, which makes quantification of noise less accurate. In addition, each research group often develops their own data analysis pipeline making it impossible to compare data from different groups. To remedy this problem a streamlined and standardized scRNA-seq data analysis and normalization protocol was designed and developed. After analyzing multiple experiments we identified the possible pipeline stages, and tools needed. Our pipeline is capable of handling data with adapters and barcodes, which was not the case with pipelines from some experiments. Our pipeline can be used to analyze single experiment scRNA-seq data and also to compare scRNA-seq data across experiments. Various processes like data gathering, file conversion, and data merging were automated in the pipeline. The main focus was to standardize and normalize single-cell RNA-seq data to minimize technical noise introduced by disparate platforms.
ContributorsBalachandran, Parithi (Author) / Wang, Xiao (Thesis advisor) / Brafman, David (Committee member) / Lockhart, Thurmon (Committee member) / Arizona State University (Publisher)
Created2017
187533-Thumbnail Image.png
Description
Clustered regularly interspace short palindromic repeats (CRISPR) and CRISPR associated (Cas) technologies have become integral to genome editing. Canonical CRISPR-Cas9 systems function as a ribonucleic acid (RNA)-guided nucleases. Single guide RNAs (sgRNA) can be easily designed to target Cas9’s nuclease activity towards protospacer deoxyribonucleic acid (DNA) sequences. The relatively ease

Clustered regularly interspace short palindromic repeats (CRISPR) and CRISPR associated (Cas) technologies have become integral to genome editing. Canonical CRISPR-Cas9 systems function as a ribonucleic acid (RNA)-guided nucleases. Single guide RNAs (sgRNA) can be easily designed to target Cas9’s nuclease activity towards protospacer deoxyribonucleic acid (DNA) sequences. The relatively ease and efficiency of CRISPR-Cas9 systems has enabled numerous technologies and DNA manipulations. Genome engineering in human cell lines is centered around the study of genetic contribution to disease phenotypes. However, canonical CRISPR-Cas9 systems are largely reliant on double stranded DNA breaks (DSBs). DSBs can induce unintended genomic changes including deletions and complex rearrangements. Likewise, DSBs can induce apoptosis and cell cycle arrest confounding applications of Cas9-based systems for disease modeling. Base editors are a novel class of nicking Cas9 engineered with a cytidine or adenosine deaminase. Base editors can install single letter DNA edits without DSBs. However, detecting single letter DNA edits is cumbersome, requiring onerous DNA isolation and sequencing, hampering experimental throughput. This document describes the creation of a fluorescent reporter system to detect Cytosine-to-Thymine (C-to-T) base editing. The fluorescent reporter utilizes an engineered blue fluorescent protein (BFP) that is converted to green fluorescent protein (GFP) upon targeted C-to-T conversion. The BFP-to-GFP conversion enables the creation of a strategy to isolate edited cell populations, termed Transient Reporter for Editing Enrichment (TREE). TREE increases the ease of optimizing base editor designs and assists in editing cell types recalcitrant to DNA editing. More recently, Prime editing has been demonstrated to introduce user defined DNA edits without the need for DSBs and donor DNA. Prime editing requires specialized prime editing guide RNAs (pegRNAs). pegRNAs are however difficult to manually design. This document describes the creation of a software tool: Prime Induced Nucleotide Engineering Creator of New Edits (PINE-CONE). PINE-CONE rapidly designs pegRNAs based off basic edit information and will assist with synthetic biology and biomedical research.
ContributorsStandage-Beier, Kylie S (Author) / Wang, Xiao (Thesis advisor) / Brafman, David A (Committee member) / Tian, Xiao-jun (Committee member) / Nielsen, David R (Committee member) / Arizona State University (Publisher)
Created2023