Matching Items (39)
Filtering by

Clear all filters

149684-Thumbnail Image.png
Description
This thesis explores concept of "global bioethics" in both its development as well as its current state in an effort to understand exactly where it fits into the larger field of bioethics. Further, the analysis poses specific questions regarding what it may contribute to this field and related fields, and

This thesis explores concept of "global bioethics" in both its development as well as its current state in an effort to understand exactly where it fits into the larger field of bioethics. Further, the analysis poses specific questions regarding what it may contribute to this field and related fields, and the possibility and scope associated with the continued development of global bioethics as its own discipline. To achieve this, the piece addresses questions regarding current opinions on the subject, the authorities and their associated publications related to global bioethics, and what the aims of the subject should be given its current state. "Global Bioethics" is a term that, while seen frequently in bioethics literature, is difficult to define succinctly. While many opinions are provided on the concept, little consensus exists regarding its application and possible contributions and, in some cases, even its very possibility. Applying ethical principles of health and medicine globally is undoubtedly complicated by the cultural, social, and geographical considerations associated with understanding health and medicine in different populations, leading to a dichotomy between two schools of thought in relation to global bioethics. These two sides consist of those who think that universality of bioethics is possible whereas the opposing viewpoint holds that relativism is the key to applying ethics on a global scale. Despite the aforementioned dichotomy in addressing applications of global bioethics, this analysis shows that the goals of the subject should be more focused on contributing to ethical frameworks and valuable types of thinking related to the ethics health and medicine on a global scale. This is achieved through an exploration of bioethics in general, health as a function of society and culture, the history and development of global bioethics itself, and an exploration of pertinent global health topics. While primarily descriptive in nature, this analysis critiques some of the current discussions and purported goals surrounding global bioethics, recommending that the field focus on fostering valuable discussion and framing of issues rather than the pursuit of concrete judgments on moral issues in global health and medicine.
ContributorsRuffenach, Stephen Charles (Author) / Robert, Jason S (Thesis advisor) / Maienschein, Jane (Committee member) / Hruschka, Daniel J (Committee member) / Arizona State University (Publisher)
Created2011
152156-Thumbnail Image.png
Description
Once perceived as an unimportant occurrence in living organisms, cell degeneration was reconfigured as an important biological phenomenon in development, aging, health, and diseases in the twentieth century. This dissertation tells a twentieth-century history of scientific investigations on cell degeneration, including cell death and aging. By describing four central developments

Once perceived as an unimportant occurrence in living organisms, cell degeneration was reconfigured as an important biological phenomenon in development, aging, health, and diseases in the twentieth century. This dissertation tells a twentieth-century history of scientific investigations on cell degeneration, including cell death and aging. By describing four central developments in cell degeneration research with the four major chapters, I trace the emergence of the degenerating cell as a scientific object, describe the generations of a variety of concepts, interpretations and usages associated with cell death and aging, and analyze the transforming influences of the rising cell degeneration research. Particularly, the four chapters show how the changing scientific practices about cellular life in embryology, cell culture, aging research, and molecular biology of Caenorhabditis elegans shaped the interpretations about cell degeneration in the twentieth-century as life-shaping, limit-setting, complex, yet regulated. These events created and consolidated important concepts in life sciences such as programmed cell death, the Hayflick limit, apoptosis, and death genes. These cases also transformed the material and epistemic practices about the end of cellular life subsequently and led to the formations of new research communities. The four cases together show the ways cell degeneration became a shared subject between molecular cell biology, developmental biology, gerontology, oncology, and pathology of degenerative diseases. These practices and perspectives created a special kind of interconnectivity between different fields and led to a level of interdisciplinarity within cell degeneration research by the early 1990s.
ContributorsJiang, Lijing (Author) / Maienschein, Jane (Thesis advisor) / Laubichler, Manfred (Thesis advisor) / Hurlbut, James (Committee member) / Creath, Richard (Committee member) / White, Michael (Committee member) / Arizona State University (Publisher)
Created2013
151577-Thumbnail Image.png
Description
A dental exam in twenty-first century America generally includes the taking of radiographs, which are x-ray images of the mouth. These images allow dentists to see structures below the gum line and within the teeth. Having a patient's radiographs on file has become a dental standard of care in many

A dental exam in twenty-first century America generally includes the taking of radiographs, which are x-ray images of the mouth. These images allow dentists to see structures below the gum line and within the teeth. Having a patient's radiographs on file has become a dental standard of care in many states, but x-rays were only discovered a little over 100 years ago. This research analyzes how and why the x-ray image has become a ubiquitous tool in the dental field. Primary literature written by dentists and scientists of the time shows that the x-ray was established in dentistry by the 1950s. Therefore, this thesis tracks the changes in x-ray technological developments, the spread of information and related safety concerns between 1890 and 1955. X-ray technology went from being an accidental discovery to a device commonly purchased by dentists. X-ray information started out in the form of the anecdotes of individuals and led to the formation of large professional groups. Safety concerns of only a few people later became an important facet of new devices. These three major shifts are described by looking at those who prompted the changes; they fall into the categories of people, technological artifacts and institutions. The x-ray became integrated into dentistry as a product of the work of people such as C. Edmund Kells, a proponent of dental x-rays, technological improvements including faster film speed, and the influence of institutions such as Victor X-Ray Company and the American Dental Association. These changes that resulted established a strong foundation of x-ray technology in dentistry. From there, the dental x-ray developed to its modern form.
ContributorsMartinez, Britta (Author) / Ellison, Karin (Thesis advisor) / Maienschein, Jane (Thesis advisor) / Hurlbut, Ben (Committee member) / Arizona State University (Publisher)
Created2013
150771-Thumbnail Image.png
Description
Corporations in biomedicine hold significant power and influence, in both political and personal spheres. The decisions these companies make about ethics are critically important, as they help determine what products are developed, how they are developed, how they are promoted, and potentially even how they are regulated. In the last

Corporations in biomedicine hold significant power and influence, in both political and personal spheres. The decisions these companies make about ethics are critically important, as they help determine what products are developed, how they are developed, how they are promoted, and potentially even how they are regulated. In the last fifteen years, for-profit private companies have been assembling bioethics committees to help resolve dilemmas that require informed deliberation about ethical, legal, scientific, and economic considerations. Private sector bioethics committees represent an important innovation in the governance of emerging technologies, with corporations taking a lead role in deciding what is ethically appropriate or problematic. And yet, we know very little about these committees, including their structures, memberships, mandates, authority, and impact. Drawing on an extensive literature review and qualitative analysis of semi-structured interviews with executives, scientists and board members, this dissertation provides an in-depth analysis of the Ethics and Public Policy Board at SmithKline Beecham, the Ethics Advisory Board at Advanced Cell Technology, and the Bioethics Committee at Eli Lilly and offers insights about how ideas of bioethics and governance are currently imagined and enacted within corporations. The SmithKline Beecham board was the first private sector bioethics committee; its mandate was to explore, in a comprehensive and balanced analysis, the ethics of macro trends in science and technology. The Advanced Cell Technology board was created to be like a watchdog for the company, to prevent them from making major errors. The Eli Lilly board is different than the others in that it is made up mostly of internal employees and does research ethics consultations within the company. These private sector bioethics committees evaluate and construct new boundaries between their private interests and the public values they claim to promote. Findings from this dissertation show that criticisms of private sector bioethics that focus narrowly on financial conflicts of interest and a lack of transparency obscure analysis of the ideas about governance (about expertise, credibility and authority) that emerge from these structures and hamper serious debate about the possible impacts of moving ethical deliberation from the public to the private sector.
ContributorsBrian, Jennifer (Author) / Robert, Jason S (Thesis advisor) / Maienschein, Jane (Committee member) / Hurlbut, James B (Committee member) / Sarewitz, Daniel (Committee member) / Brown, Mark B. (Committee member) / Moreno, Jonathan D. (Committee member) / Arizona State University (Publisher)
Created2012
150454-Thumbnail Image.png
Description
Despite the minor differences in the inclusiveness of the word, there is a general assumption among the scientific community that the 'pursuit of knowledge' is the most fundamental element in defining the word 'science'. However, a closer examination of how science is being conducted in modern-day South Korea reveals a

Despite the minor differences in the inclusiveness of the word, there is a general assumption among the scientific community that the 'pursuit of knowledge' is the most fundamental element in defining the word 'science'. However, a closer examination of how science is being conducted in modern-day South Korea reveals a value system starkly different from the value of knowledge. By analyzing the political discourse of the South Korean policymakers, mass media, and government documents, this study examines the definition of science in South Korea. The analysis revealed that the Korean science, informed by the cultural, historical, and societal contexts, is largely focused on the values of national economic prosperity, international competitiveness, and international reputation of the country, overshadowing other values like the pursuit of knowledge or even individual rights. The identification of the new value system in South Korean science deviating from the traditional definition of science implies that there must be other definitions of science that also deviates, and that even in the Western world, the definition of science may yield similar deviations upon closer examination. The compatibility of the South Korean brand of science to the international scientific community also implies that a categorical quality is encompassing these different contextual definitions of science.
ContributorsHyun, Byunghun (Author) / Hurlbut, Ben (Thesis advisor) / Maienschein, Jane (Committee member) / Ellison, Karin (Committee member) / Arizona State University (Publisher)
Created2011
148463-Thumbnail Image.png
Description

The increased shift towards environmentalism has brought notable attention to a universal excessive plastic consumption and subsequent plastic overload in landfills. Among these plastics, polyethylene terephthalate, more commonly known as PET, constitutes a large percentage of the waste that ends up in landfills. Material and chemical/thermal methods for recycling are

The increased shift towards environmentalism has brought notable attention to a universal excessive plastic consumption and subsequent plastic overload in landfills. Among these plastics, polyethylene terephthalate, more commonly known as PET, constitutes a large percentage of the waste that ends up in landfills. Material and chemical/thermal methods for recycling are both costly, and inefficient, which necessitates a more sustainable and cheaper alternative. The current study aims at fulfilling that role through genetic engineering of Bacillus subtilis with integration of genes from LCC, Ideonella sakaiensis, and Bacillus subtilis. The plasmid construction was done through restriction cloning. A recombinant plasmid for the expression of LCC was constructed, and transformed into Escherichia coli. Future experiments for this study should include redesigning of primers, with possible combination of signal peptides with genes during construct design, and more advanced assays for effective outcomes.

ContributorsKalscheur, Bethany Ann (Author) / Varman, Arul (Thesis director) / Andino, Jean (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
136556-Thumbnail Image.png
Description
Due to the environmental problems caused by global warming, it has become necessary to reduce greenhouse gas emissions across the planet. Biofuels, such as ethanol, have proven to release cleaner emissions when combusted. However, large scale production of these alcohols is uneconomical and inefficient due to limitations in standard separation

Due to the environmental problems caused by global warming, it has become necessary to reduce greenhouse gas emissions across the planet. Biofuels, such as ethanol, have proven to release cleaner emissions when combusted. However, large scale production of these alcohols is uneconomical and inefficient due to limitations in standard separation processes, the most common being distillation. Pervaporation is a novel separation technique that utilizes a specialized membrane to separate multicomponent solutions. In this research project, pervaporation utilizing ZIF-71/PDMS mixed matrix membranes are investigated to see their ability to recover ethanol from an ethanol/aqueous separation. Membranes with varying nanoparticle concentrations were created and their performances were analyzed. While the final results indicate that no correlation exists between nanoparticle weight percentage and selectivity, this technology is still a promising avenue for biofuel production. Future work will be conducted to improve this existing process and enhance membrane selectivity.
ContributorsHoward, Chelsea Elizabeth (Author) / Lind, Mary Laura (Thesis director) / Nielsen, David (Committee member) / Greenlee, Lauren (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor) / Materials Science and Engineering Program (Contributor)
Created2015-05
136133-Thumbnail Image.png
Description
Currently in synthetic biology only the Las, Lux, and Rhl quorum sensing pathways have been adapted for broad engineering use. Quorum sensing allows a means of cell to cell communication in which a designated sender cell produces quorum sensing molecules that modify gene expression of a designated receiver cell. While

Currently in synthetic biology only the Las, Lux, and Rhl quorum sensing pathways have been adapted for broad engineering use. Quorum sensing allows a means of cell to cell communication in which a designated sender cell produces quorum sensing molecules that modify gene expression of a designated receiver cell. While useful, these three quorum sensing pathways exhibit a nontrivial level of crosstalk, hindering robust engineering and leading to unexpected effects in a given design. To address the lack of orthogonality among these three quorum sensing pathways, previous scientists have attempted to perform directed evolution on components of the quorum sensing pathway. While a powerful tool, directed evolution is limited by the subspace that is defined by the protein. For this reason, we take an evolutionary biology approach to identify new orthogonal quorum sensing networks and test these networks for cross-talk with currently-used networks. By charting characteristics of acyl homoserine lactone (AHL) molecules used across quorum sensing pathways in nature, we have identified favorable candidate pathways likely to display orthogonality. These include Aub, Bja, Bra, Cer, Esa, Las, Lux, Rhl, Rpa, and Sin, which we have begun constructing and testing. Our synthetic circuits express GFP in response to a quorum sensing molecule, allowing quantitative measurement of orthogonality between pairs. By determining orthogonal quorum sensing pairs, we hope to identify and adapt novel quorum sensing pathways for robust use in higher-order genetic circuits.
ContributorsMuller, Ryan (Author) / Haynes, Karmella (Thesis director) / Wang, Xiao (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Department of Chemistry and Biochemistry (Contributor) / School of Life Sciences (Contributor)
Created2015-05
136500-Thumbnail Image.png
Description
Ethanol is a widely used biofuel in the United States that is typically produced through the fermentation of biomass feedstocks. Demand for ethanol has grown significantly from 2000 to 2015 chiefly due to a desire to increase energy independence and reduce the emissions of greenhouse gases associated with transportation. As

Ethanol is a widely used biofuel in the United States that is typically produced through the fermentation of biomass feedstocks. Demand for ethanol has grown significantly from 2000 to 2015 chiefly due to a desire to increase energy independence and reduce the emissions of greenhouse gases associated with transportation. As demand grows, new ethanol plants must be developed in order for supply to meet demand. This report covers some of the major considerations in developing these new plants such as the type of biomass used, feed treatment process, and product separation and investigates their effect on the economic viability and environmental benefits of the ethanol produced. The dry grind process for producing ethanol from corn, the most common method of production, is examined in greater detail. Analysis indicates that this process currently has the highest capacity for production and profitability but limited effect on greenhouse gas emissions compared to less common alternatives.
ContributorsSchrilla, John Paul (Author) / Kashiwagi, Dean (Thesis director) / Kashiwagi, Jacob (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2015-05
137034-Thumbnail Image.png
Description
The recovery of biofuels permits renewable alternatives to present day fossil fuels that cause devastating effects on the planet. Pervaporation is a separation process that shows promise for the separation of ethanol from biologically fermentation broths. The performance of thin film composite membranes of polydimethylsiloxane (PDMS) and zeolite imidazolate frameworks

The recovery of biofuels permits renewable alternatives to present day fossil fuels that cause devastating effects on the planet. Pervaporation is a separation process that shows promise for the separation of ethanol from biologically fermentation broths. The performance of thin film composite membranes of polydimethylsiloxane (PDMS) and zeolite imidazolate frameworks (ZIF-71) dip coated onto a porous substrate are analyzed. Pervaporation performance factors of flux, separation factor and selectivity are measured for varying ZIF-71 loadings of pure PDMS, 5 wt%, 12.5 wt% and 25 wt% at 60 oC with a 2 wt% ethanol/water feed. The increase in ZIF-71 loadings increased the performance of PDMS to produce higher flux, higher separation factor and high selectivity than pure polymeric films.
ContributorsLau, Ching Yan (Author) / Lind, Mary Laura (Thesis director) / Durgun, Pinar Cay (Committee member) / Lively, Ryan (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / Chemical Engineering Program (Contributor)
Created2014-05