Matching Items (14)
Filtering by

Clear all filters

149885-Thumbnail Image.png
Description
The cyanobacterium Synechocystis sp. PCC 6803 performs oxygenic photosynthesis. Light energy conversion in photosynthesis takes place in photosystem I (PSI) and photosystem II (PSII) that contain chlorophyll, which absorbs light energy that is utilized as a driving force for photosynthesis. However, excess light energy may lead to formation of reactive

The cyanobacterium Synechocystis sp. PCC 6803 performs oxygenic photosynthesis. Light energy conversion in photosynthesis takes place in photosystem I (PSI) and photosystem II (PSII) that contain chlorophyll, which absorbs light energy that is utilized as a driving force for photosynthesis. However, excess light energy may lead to formation of reactive oxygen species that cause damage to photosynthetic complexes, which subsequently need repair or replacement. To gain insight in the degradation/biogenesis dynamics of the photosystems, the lifetimes of photosynthetic proteins and chlorophyll were determined by a combined stable-isotope (15N) and mass spectrometry method. The lifetimes of PSII and PSI proteins ranged from 1-33 and 30-75 hours, respectively. Interestingly, chlorophyll had longer lifetimes than the chlorophyll-binding proteins in these photosystems. Therefore, photosynthetic proteins turn over and are replaced independently from each other, and chlorophyll is recycled from the damaged chlorophyll-binding proteins. In Synechocystis, there are five small Cab-like proteins (SCPs: ScpA-E) that share chlorophyll a/b-binding motifs with LHC proteins in plants. SCPs appear to transiently bind chlorophyll and to regulate chlorophyll biosynthesis. In this study, the association of ScpB, ScpC, and ScpD with damaged and repaired PSII was demonstrated. Moreover, in a mutant lacking SCPs, most PSII protein lifetimes were unaffected but the lifetime of chlorophyll was decreased, and one of the nascent PSII complexes was missing. SCPs appear to bind PSII chlorophyll while PSII is repaired, and SCPs stabilize nascent PSII complexes. Furthermore, aminolevulinic acid biosynthesis, an early step of chlorophyll biosynthesis, was impaired in the absence of SCPs, so that the amount of chlorophyll in the cells was reduced. Finally, a deletion mutation was introduced into the sll1906 gene, encoding a member of the putative bacteriochlorophyll delivery (BCD) protein family. The Sll1906 sequence contains possible chlorophyll-binding sites, and its homolog in purple bacteria functions in proper assembly of light-harvesting complexes. However, the sll1906 deletion did not affect chlorophyll degradation/biosynthesis and photosystem assembly. Other (parallel) pathways may exist that may fully compensate for the lack of Sll1906. This study has highlighted the dynamics of photosynthetic complexes in their biogenesis and turnover and the coordination between synthesis of chlorophyll and photosynthetic proteins.
ContributorsYao, Cheng I Daniel (Author) / Vermaas, Wim (Thesis advisor) / Fromme, Petra (Committee member) / Roberson, Robert (Committee member) / Webber, Andrew (Committee member) / Arizona State University (Publisher)
Created2011
137704-Thumbnail Image.png
Description
Cardiovascular disease is one of the most deadly outcomes of end stage renal disease. Bioelectrical impedance is a intriguing, yet unproven method of measuring fluid buildup in the heart, and is marketed as a early diagnostic tool for onset of cardiovascular disease. In this study, selenium supplements were given to

Cardiovascular disease is one of the most deadly outcomes of end stage renal disease. Bioelectrical impedance is a intriguing, yet unproven method of measuring fluid buildup in the heart, and is marketed as a early diagnostic tool for onset of cardiovascular disease. In this study, selenium supplements were given to a cohort of dialysis patients in the Phoenix metro area and their fluid tolerance was measured with thoracic biolectrical impedance. BNP was used as a correlate to see if bioelectrical impedance was correlated with heart disease. The study found no correlation between BNP and bioelectrical impedance and thus was not an accurate diagnostic tool in a medical setting.
ContributorsBrown, Patrick Michael (Author) / Johnston, Carol (Thesis director) / Orchinik, Miles (Committee member) / Tingey, Michael (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / School of Historical, Philosophical and Religious Studies (Contributor)
Created2013-05
152055-Thumbnail Image.png
Description
To address the need of scientists and engineers in the United States workforce and ensure that students in higher education become scientifically literate, research and policy has called for improvements in undergraduate education in the sciences. One particular pathway for improving undergraduate education in the science fields is to reform

To address the need of scientists and engineers in the United States workforce and ensure that students in higher education become scientifically literate, research and policy has called for improvements in undergraduate education in the sciences. One particular pathway for improving undergraduate education in the science fields is to reform undergraduate teaching. Only a limited number of studies have explored the pedagogical content knowledge of postsecondary level teachers. This study was conducted to characterize the PCK of biology faculty and explore the factors influencing their PCK. Data included semi-structured interviews, classroom observations, documents, and instructional artifacts. A qualitative inquiry was designed to conduct an in-depth investigation focusing on the PCK of six biology instructors, particularly the types of knowledge they used for teaching biology, their perceptions of teaching, and the social interactions and experiences that influenced their PCK. The findings of this study reveal that the PCK of the biology faculty included eight domains of knowledge: (1) content, (2) context, (3) learners and learning, (4) curriculum, (5) instructional strategies, (6) representations of biology, (7) assessment, and (8) building rapport with students. Three categories of faculty PCK emerged: (1) PCK as an expert explainer, (2) PCK as an instructional architect, and (3) a transitional PCK, which fell between the two prior categories. Based on the interpretations of the data, four social interactions and experiences were found to influence biology faculty PCK: (1) teaching experience, (2) models and mentors, (3) collaborations about teaching, and (4) science education research. The varying teaching perspectives of the faculty also influenced their PCK. This study shows that the PCK of biology faculty for teaching large introductory courses at large research institutions is heavily influenced by factors beyond simply years of teaching experience and expert content knowledge. Social interactions and experiences created by the institution play a significant role in developing the PCK of biology faculty.
ContributorsHill, Kathleen M. (Author) / Luft, Julie A. (Thesis advisor) / Baker, Dale (Committee member) / Orchinik, Miles (Committee member) / Arizona State University (Publisher)
Created2013
151137-Thumbnail Image.png
Description
Though for most of the twentieth century, dogma held that the adult brain was post-mitotic, it is now known that adult neurogenesis is widespread among vertebrates, from fish, amphibians, reptiles and birds to mammals including humans. Seasonal changes in adult neurogenesis are well characterized in the song control system of

Though for most of the twentieth century, dogma held that the adult brain was post-mitotic, it is now known that adult neurogenesis is widespread among vertebrates, from fish, amphibians, reptiles and birds to mammals including humans. Seasonal changes in adult neurogenesis are well characterized in the song control system of song birds, and have been found in seasonally breeding mammals as well. In contrast to more derived vertebrates, such as mammals, where adult neurogenesis is restricted primarily to the olfactory bulb and the dentate gyrus of the hippocampus, neurogenesis is widespread along the ventricles of adult amphibians. I hypothesized that seasonal changes in adult amphibian brain cell proliferation and survival are a potential regulator of reproductive neuroendocrine function. Adult, male American bullfrogs (Rana catesbeiana; aka Lithobates catesbeianus), were maintained in captivity for up to a year under season-appropriate photoperiod. Analysis of hormone levels indicated seasonal changes in plasma testosterone concentration consistent with field studies. Using the thymidine analogue 5-bromo-2-deoxyuridine (BrdU) as a marker for newly generated cells, two differentially regulated aspects of brain cell neogenesis were tracked; that is, proliferation and survival. Seasonal differences were found in BrdU labeling in several brain areas, including the olfactory bulb, medial pallium, nucleus accumbens and the infundibular hypothalamus. Clear seasonal differences were also found in the pars distalis region of the pituitary gland, an important component of neuroendocrine pathways. BrdU labeling was also examined in relation to two neuropeptides important for amphibian reproduction: arginine vasotocin and gonadotropin releasing hormone. No cells co-localized with BrdU and either neuropeptide, but new born cells were found in close proximity to neuropeptide-containing neurons. These data suggest that seasonal differences in brain and pituitary gland cell neogenesis are a potential neuroendocrine regulatory mechanism.
ContributorsMumaw, Luke (Author) / Orchinik, Miles (Thesis advisor) / Deviche, Pierre (Committee member) / Chandler, Douglas (Committee member) / Arizona State University (Publisher)
Created2012
137625-Thumbnail Image.png
Description
This study examined the cross-sectional and longitudinal associations among diurnal cortisol rhythms and sleeping patterns in adolescents. 79 participants completed the study over three days during the spring semester of their senior year in high school, and 76 of these subjects participated again over three days during the fall semester

This study examined the cross-sectional and longitudinal associations among diurnal cortisol rhythms and sleeping patterns in adolescents. 79 participants completed the study over three days during the spring semester of their senior year in high school, and 76 of these subjects participated again over three days during the fall semester of their freshman year in college. They completed daily saliva samples and diary entries, while wearing an actigraph to obtain objective measurements of sleep duration and efficiency. Cross-sectionally, longer sleep duration was associated with a lower cortisol awakening response, a smaller area under the cortisol curve, and a steeper cortisol slope. Longitudinally, there was no significant relationship between sleep duration and these cortisol parameters. Moreover, sleep efficiency was not associated with cortisol parameters cross-sectionally nor longitudinally. Results suggest associations between concurrent sleep duration and cortisol patterns, and may have significant impact on understanding adolescents' physiological response to stress.
ContributorsLathrop, Devon Olivia (Author) / Doane, Leah (Thesis director) / Orchinik, Miles (Committee member) / Zeiders, Katherine (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2013-05
168510-Thumbnail Image.png
Description
Innovations in undergraduate education have increased the prevalence of active learning courses, online education, and student engagement in the high-impact practice of undergraduate research, however it is unknown whether students with disabilities are able to engage in these innovative learning environments to the same extent that they are able to

Innovations in undergraduate education have increased the prevalence of active learning courses, online education, and student engagement in the high-impact practice of undergraduate research, however it is unknown whether students with disabilities are able to engage in these innovative learning environments to the same extent that they are able to engage in more traditional learning environments. Universities, disability resource centers, and instructors are mandated to provide accommodations to students with disabilities for the purposes of prohibiting discrimination and ensuring equal access to opportunities for individuals with disabilities. Are accommodations being adapted and created for these new types of learning environments? This dissertation reports findings from four studies about the experiences of students with disabilities in these three learning environments, specifically examining the challenges students with disabilities encounter and the emerging recommendations for more effective accommodations. I find that students with disabilities experience challenges in each of these learning environments and that the current suite of accommodations are not sufficient for students with disabilities. I argue that institutions need to consider modifying student accommodations and the process for obtaining them to better support students with disabilities in these evolving learning environments. I also provide recommendations for the ways in which undergraduate science education can be made more accessible and inclusive of students with disabilities.
ContributorsGin, Logan Eugene (Author) / Brownell, Sara E. (Thesis advisor) / Cooper, Katelyn M. (Thesis advisor) / Collins, James P. (Committee member) / Stout, Valerie (Committee member) / Zheng, Yi (Committee member) / Arizona State University (Publisher)
Created2021
Description
The partitioning of photosynthates between their sites of production (source) and their sites of utilization (sink) is a major determinant of crop yield and the potential of regulating this translocation promises substantial opportunities for yield increases. Ubiquitous overexpression of the plant type I proton pyrophosphatase (H+-PPase) in crops improves several

The partitioning of photosynthates between their sites of production (source) and their sites of utilization (sink) is a major determinant of crop yield and the potential of regulating this translocation promises substantial opportunities for yield increases. Ubiquitous overexpression of the plant type I proton pyrophosphatase (H+-PPase) in crops improves several valuable traits including salt tolerance and drought resistance, nutrient and water use efficiencies, and increased root biomass and yield. Originally, type I H+-PPases were described as pyrophosphate (PPi)-dependent proton pumps localized exclusively in vacuoles of mesophyll and meristematic tissues. It has been proposed that in the meristematic tissues, the role of this enzyme would be hydrolyzing PPi originated in biosynthetic reactions and favoring sink strength. Interestingly, this enzyme has been also localized at the plasma membrane of companion cells in the phloem which load and transport photosynthates from source leaves to sinks. Of note, the plasma membrane-localized H+-PPase could only function as a PPi-synthase in these cells due to the steep proton gradient between the apoplast and cytosol. The generated PPi would favor active sucrose loading through the sucrose/proton symporter in the phloem by promoting sucrose hydrolysis through the Sucrose Synthase pathway and providing the ATP required to maintain the proton gradient. To better understand these two different roles of type I H+-PPases, a series of Arabidopsis thaliana transgenic plants were generated. By expressing soluble pyrophosphatases in companion cells of Col-0 ecotype and H+-PPase mutants, impaired photosynthates partitioning was observed, suggesting phloem-localized H+-PPase could generate the PPi required for sucrose loading. Col-0 plants expressed with either phloem- or meristem-specific AVP1 overexpression cassette and the cross between the two tissue specific lines (Cross) were generated. The results showed that the phloem-specific AVP1-overexpressing plants had increased root hair elongation under limited nutrient conditions and both phloem- and meristem-overexpression of AVP1 contributed to improved rhizosphere acidification and drought resistance. It was concluded that H+-PPases localized in both sink and source tissues regulate plant growth and performance under stress through its versatile enzymatic functions (PPi hydrolase and synthase).
ContributorsLi, Lin (Author) / Park, Yujin (Thesis advisor) / Mangone, Marco (Committee member) / Roberson, Robert (Committee member) / Vermaas, Willem (Committee member) / Arizona State University (Publisher)
Created2022
191030-Thumbnail Image.png
Description
Emerging pathogens present several challenges to medical diagnostics. Primarily, the exponential spread of a novel pathogen through naïve populations require a rapid and overwhelming diagnostic response at the site of outbreak. While point-of-care (PoC) platforms have been developed for detection of antigens, serologic responses, and pathogenic genomes, only nucleic acid

Emerging pathogens present several challenges to medical diagnostics. Primarily, the exponential spread of a novel pathogen through naïve populations require a rapid and overwhelming diagnostic response at the site of outbreak. While point-of-care (PoC) platforms have been developed for detection of antigens, serologic responses, and pathogenic genomes, only nucleic acid diagnostics currently have the potential to be developed and manufactured within weeks of an outbreak owing to the speed of next-generation sequencing and custom DNA synthesis. Among nucleic acid diagnostics, isothermal amplification strategies are uniquely suited for PoC implementation due to their simple instrumentation and lack of thermocycling requirement. Unfortunately, isothermal strategies are currently prone to spurious nonspecific amplification, hindering their specificity and necessitating extensive empirical design pipelines that are both time and resource intensive. In this work, isothermal amplification strategies are extensively compared for their feasibility of implementation in outbreak response scenarios. One such technology, Loop-mediated Amplification (LAMP), is identified as having high-potential for rapid development and PoC deployment. Various approaches to abrogating nonspecific amplification are described including a novel in silico design tool based on coarse-grained simulation of interactions between thermophilic DNA polymerase and DNA strands in isothermal reaction conditions. Nonspecific amplification is shown to be due to stabilization of primer secondary structures by high concentrations of Bst DNA polymerase and a mechanism of micro-complement-mediated cross-priming is demonstrated as causal via nanopore sequencing of nonspecific reaction products. The resulting computational model predicts primer set background in 64% of 67 test assays and its usefulness is illustrated further by determining problematic primers in a West Nile Virus-specific LAMP primer set and optimizing primer 3’ nucleotides to eliminate micro-complements within the reaction, resulting in inhibition of background accumulation. Finally, the emergence of Orthopox monkeypox (MPXV) as a recurring threat is discussed and SimCycle is utilized to develop a novel technique for clade-specific discrimination of MPXV based on bridging viral genomic rearrangements (Bridging LAMP). Bridging LAMP is implemented in a 4-plex microfluidic format and demonstrates 100% sensitivity in detection of 100 copies of viral lysates and 45 crude MPXV-positive patient samples collected during the 2022 Clade IIb outbreak.
ContributorsKnappenberger, Mark Daniel (Author) / Anderson, Karen S (Thesis advisor) / LaBaer, Joshua (Committee member) / Roberson, Robert (Committee member) / Lindsay, Stuart (Committee member) / Arizona State University (Publisher)
Created2023
187818-Thumbnail Image.png
Description
Male reproductive dysfunction accounts for almost half of male infertility cases, yet the signaling mechanisms involved in the male reproductive system remain unclear. Although the exact cause of male reproductive dysfunction varies, obtaining a better understanding of the modulators of smooth muscle contractions may provide new targets for the treatment

Male reproductive dysfunction accounts for almost half of male infertility cases, yet the signaling mechanisms involved in the male reproductive system remain unclear. Although the exact cause of male reproductive dysfunction varies, obtaining a better understanding of the modulators of smooth muscle contractions may provide new targets for the treatment of male reproductive conditions. The male reproductive tract, consisting of the testes, epididymis, vas deferens, and penis, is lined with innervated smooth muscle fibers that transport spermatozoa through the system. Contractions of these smooth muscle fibers can be modulated by neurotransmitters and hormones, like dopamine and norepinephrine, as well as biogenic amines. The focus of this study is on the biogenic amine tyramine, which is produced by the breakdown of tyrosine via decarboxylation. Tyramine has been shown to modulate vasoconstriction and increase blood pressure due to its effect on smooth muscle contractions. This study has found that tyramine localizes in male reproductive tissues and modulates smooth muscle contractions. Age and environment were also found to play a significant role in the expression of tyramine and its associated receptor, TAAR1.
ContributorsSteadman, Solange (Author) / Baluch, Debra (Thesis advisor) / Roberson, Robert (Committee member) / Sweazea, Karen (Committee member) / Arizona State University (Publisher)
Created2023
187535-Thumbnail Image.png
Description
Human preterm labor is the single most significant issue in modern obstetrics andgynecology, affecting ten percent of pregnancies, constituting the leading cause of infant death, and contributing significantly to chronic childhood disease. Obstetricians and reproductive scientists are faced with the major challenge of trying to increase the understanding of the

Human preterm labor is the single most significant issue in modern obstetrics andgynecology, affecting ten percent of pregnancies, constituting the leading cause of infant death, and contributing significantly to chronic childhood disease. Obstetricians and reproductive scientists are faced with the major challenge of trying to increase the understanding of the complex molecular and cellular signals that regulate uterine activity during human pregnancy and labor. Even though preterm labor accounts for a large portion of perinatal mortality and morbidity, there still is not an effective therapeutic strategy for the treatment or prevention of preterm labor. This dissertation presents tyramine as an alternative modulator of uterine activity. In this dissertation the aims were as follows: 1) to investigate the localization of tyramine and trace amine associated receptor 1 (TAAR1) in the mouse uterine horn using immunohistochemistry as well as confirm the presence of tyramine in the uterine tissue using high performance liquid chromatography, 2) identify which TAAR 1-9 subtypes were present in the mouse uterine horn using RT-qPCR, 3) investigate ultrastructural differences in the mouse uterine horn following tyramine and dopamine treatment using transmission electron microscopy and 4) investigate pinopod ultrastructure as well as pinopod ultrastructural differences following tyramine and dopamine treatment. The research presented in this dissertation showed: 1) tyramine has very specific localization in the mouse endometrium, mainly in the uterine glands, TAAR1 is localized all throughout the perimetrium, myometrium and endometrium, and that tyramine was confirmed and quantified using HPLC, 2) TAAR 1- 9 genes are expressed in trace levels in the mouse uterine horn, 3) tyramine influences changes in endometrial ultrastructure, and 4) tyramine influences changes in pinopod ultrastructure. Ultimately these findings can help with identifying novel treatment options not only for spontaneous preterm labor contractions but also for other uterine related disorders.
ContributorsObayomi, SM Bukola (Author) / Baluch, Debra P (Thesis advisor) / Roberson, Robert (Thesis advisor) / Sweazea, Karen (Committee member) / Brent, Colin (Committee member) / Arizona State University (Publisher)
Created2023