Matching Items (26)
Filtering by

Clear all filters

Description
Speciation is the fundamental process that has generated the vast diversity of life on earth. The hallmark of speciation is the evolution of barriers to gene flow. These barriers may reduce gene flow either by keeping incipient species from hybridizing at all (pre-zygotic), or by reducing the fitness of hybrids

Speciation is the fundamental process that has generated the vast diversity of life on earth. The hallmark of speciation is the evolution of barriers to gene flow. These barriers may reduce gene flow either by keeping incipient species from hybridizing at all (pre-zygotic), or by reducing the fitness of hybrids (post-zygotic). To understand the genetic architecture of these barriers and how they evolve, I studied a genus of wasps that exhibits barriers to gene flow that act both pre- and post-zygotically. Nasonia is a genus of four species of parasitoid wasps that can be hybridized in the laboratory. When two of these species, N. vitripennis and N. giraulti are mated, their offspring suffer, depending on the generation and cross examined, up to 80% mortality during larval development due to incompatible genic interactions between their nuclear and mitochondrial genomes. These species also exhibit pre-zygotic isolation, meaning they are more likely to mate with their own species when given the choice. I examined these two species and their hybrids to determine the genetic and physiological bases of both speciation mechanisms and to understand the evolutionary forces leading to them. I present results that indicate that the oxidative phosphorylation (OXPHOS) pathway, an essential pathway that is responsible for mitochondrial energy generation, is impaired in hybrids of these two species. These results indicate that this impairment is due to the unique evolutionary dynamics of the combined nuclear and mitochondrial origin of this pathway. I also present results showing that, as larvae, these hybrids experience retarded growth linked to the previously observed mortality and I explore possible physiological mechanisms for this. Finally, I show that the pre-mating isolation is due to a change in a single pheromone component in N. vitripennis males, that this change is under simple genetic control, and that it evolved neutrally before being co-opted as a species recognition signal. These results are an important addition to our overall understanding of the mechanisms of speciation and showcase Nasonia as an emerging model for the study of the genetics of speciation.
ContributorsGibson, Joshua D (Author) / Gadau, Jürgen (Thesis advisor) / Harrison, Jon (Committee member) / Pratt, Stephen (Committee member) / Verrelli, Brian (Committee member) / Willis, Wayne (Committee member) / Arizona State University (Publisher)
Created2013
151901-Thumbnail Image.png
Description
ABSTRACT 1. Aposematic signals advertise prey distastefulness or metabolic unprofitability to potential predators and have evolved independently in many prey groups over the course of evolutionary history as a means of protection from predation. Most aposematic signals investigated to date exhibit highly chromatic patterning; however, relatives in these toxic groups

ABSTRACT 1. Aposematic signals advertise prey distastefulness or metabolic unprofitability to potential predators and have evolved independently in many prey groups over the course of evolutionary history as a means of protection from predation. Most aposematic signals investigated to date exhibit highly chromatic patterning; however, relatives in these toxic groups with patterns of very low chroma have been largely overlooked. 2. We propose that bright displays with low chroma arose in toxic prey species because they were more effective at deterring predation than were their chromatic counterparts, especially when viewed in relatively low light environments such as forest understories. 3. We analyzed the reflectance and radiance of color patches on the wings of 90 tropical butterfly species that belong to groups with documented toxicity that vary in their habitat preferences to test this prediction: Warning signal chroma and perceived chromaticity are expected to be higher and brightness lower in species that fly in open environments when compared to those that fly in forested environments. 4. Analyses of the reflectance and radiance of warning color patches and predator visual modeling support this prediction. Moreover, phylogenetic tests, which correct for statistical non-independence due to phylogenetic relatedness of test species, also support the hypothesis of an evolutionary correlation between perceived chromaticity of aposematic signals and the flight habits of the butterflies that exhibit these signals.
ContributorsDouglas, Jonathan Marion (Author) / Rutowski, Ronald L (Thesis advisor) / Gadau, Juergen (Committee member) / McGraw, Kevin J. (Committee member) / Arizona State University (Publisher)
Created2013
152635-Thumbnail Image.png
Description
Urbanization provides an excellent opportunity to examine the effects of human-induced rapid environmental change (HIREC) on natural ecosystems. Certain species can dominate in urban habitats at the expense of biodiversity. Phenotypic plasticity may be the mechanism by which these 'urban exploiters' flourish in urban areas. Color displays and condition-dependent phenotypes

Urbanization provides an excellent opportunity to examine the effects of human-induced rapid environmental change (HIREC) on natural ecosystems. Certain species can dominate in urban habitats at the expense of biodiversity. Phenotypic plasticity may be the mechanism by which these 'urban exploiters' flourish in urban areas. Color displays and condition-dependent phenotypes are known to be highly plastic. However, conspicuous color displays are perplexing in that they can be costly to produce and may increase detection by enemies. The Western black widow spider () is a superabundant pest species that forms dense aggregations throughout metropolitan Phoenix, Arizona, USA. Adult female display a red hourglass on their abdomen, which is speculated to function as a conspicuous warning signal to enemies. Here, I performed field studies to identify how widow morphology and hourglass color differ between urban and desert subpopulations. I also conducted laboratory experiments to examine the dietary sensitivity of hourglass coloration and to identify its functional role in the contexts of agonism, mating, and predator defense. My field data reveal significant spatial variation across urban and desert subpopulations in ecology and color. Furthermore, hourglass coloration was significantly influenced by environmental factors unique to urban habitats. Desert spiders were found to be smaller and less colorful than urban spiders. Throughout, I observed a positive correlation between body condition and hourglass size. Laboratory diet manipulations empirically confirm the condition-dependence of hourglass size. Additionally, widows with extreme body conditions exhibited condition-dependent coloration. However, hourglass obstruction and enlargement did not produce any effects on the outcome of agonistic encounters, male courtship, or predator deterrence. This work offers important insights into the effects of urbanization on the ecology and coloration of a superabundant pest species. While the function of the hourglass remains undetermined, my findings characterize the black widow's hourglass as extremely plastic. Plastic responses to novel environmental conditions can modify the targets of natural selection and subsequently influence evolutionary outcomes. Therefore, assuming a heritable component to this plasticity, the response of hourglass plasticity to the abrupt environmental changes in urban habitats may result in the rapid evolution of this phenotype.
ContributorsGburek, Theresa (Author) / Johnson, James C. (Thesis advisor) / McGraw, Kevin J. (Committee member) / Rutowski, Ronald L (Committee member) / Arizona State University (Publisher)
Created2014
150161-Thumbnail Image.png
Description
One hypothesis for the small size of insects relative to vertebrates, and the existence of giant fossil insects, is that atmospheric oxygen levels have constrained body sizes because oxygen delivery would be unable to match the needs of metabolically active tissues in larger insects. This study tested whether oxygen delivery

One hypothesis for the small size of insects relative to vertebrates, and the existence of giant fossil insects, is that atmospheric oxygen levels have constrained body sizes because oxygen delivery would be unable to match the needs of metabolically active tissues in larger insects. This study tested whether oxygen delivery becomes more challenging for larger insects by measuring the oxygen-sensitivity of flight metabolic rates and behavior during hovering for 11 different species of dragonflies that range in mass by an order of magnitude. Animals were flown in 7 different oxygen concentrations ranging from 30% to 2.5% to assess the sensitivity of their behavior and flight metabolic rates to oxygen. I also assessed the oxygen-sensitivity of flight in low-density air (nitrogen replaced with helium), to increase the metabolic demands of hovering flight. Lowered atmosphere densities did induce higher metabolic rates. Flight behaviors but not flight metabolic rates were highly oxygen-sensitive. A significant interaction between oxygen and mass was found for total flight time, with larger dragonflies varying flight time more in response to atmospheric oxygen. This study provides some support for the hypothesis that larger insects are more challenged in oxygen delivery, as predicted by the oxygen limitation hypothesis for insect gigantism in the Paleozoic.
ContributorsHenry, Joanna Randyl (Author) / Harrison, Jon F. (Thesis advisor) / Kaiser, Alexander (Committee member) / Rutowski, Ronald L (Committee member) / Arizona State University (Publisher)
Created2011
150228-Thumbnail Image.png
Description
The repression of reproductive competition and the enforcement of altruism are key components to the success of animal societies. Eusocial insects are defined by having a reproductive division of labor, in which reproduction is relegated to one or few individuals while the rest of the group members maintain the colony

The repression of reproductive competition and the enforcement of altruism are key components to the success of animal societies. Eusocial insects are defined by having a reproductive division of labor, in which reproduction is relegated to one or few individuals while the rest of the group members maintain the colony and help raise offspring. However, workers have retained the ability to reproduce in most insect societies. In the social Hymenoptera, due to haplodiploidy, workers can lay unfertilized male destined eggs without mating. Potential conflict between workers and queens can arise over male production, and policing behaviors performed by nestmate workers and queens are a means of repressing worker reproduction. This work describes the means and results of the regulation of worker reproduction in the ant species Aphaenogaster cockerelli. Through manipulative laboratory studies on mature colonies, the lack of egg policing and the presence of physical policing by both workers and queens of this species are described. Through chemical analysis and artificial chemical treatments, the role of cuticular hydrocarbons as indicators of fertility status and the informational basis of policing in this species is demonstrated. An additional queen-specific chemical signal in the Dufour's gland is discovered to be used to direct nestmate aggression towards reproductive competitors. Finally, the level of actual worker-derived males in field colonies is measured. Together, these studies demonstrate the effectiveness of policing behaviors on the suppression of worker reproduction in a social insect species, and provide an example of how punishment and the threat of punishment is a powerful force in maintaining cooperative societies.
ContributorsSmith, Adrian A. (Author) / Liebig, Juergen (Thesis advisor) / Hoelldobler, Bert (Thesis advisor) / Gadau, Juergen (Committee member) / Johnson, Robert A. (Committee member) / Pratt, Stephen (Committee member) / Arizona State University (Publisher)
Created2011
150734-Thumbnail Image.png
Description
Differences between males and females can evolve through a variety of mechanisms, including sexual and ecological selection. Because coloration is evolutionarily labile, sexually dichromatic species are good models for understanding the evolution of sex differences. While many jumping spiders exhibit diverse and brilliant coloration, they have been notably absent from

Differences between males and females can evolve through a variety of mechanisms, including sexual and ecological selection. Because coloration is evolutionarily labile, sexually dichromatic species are good models for understanding the evolution of sex differences. While many jumping spiders exhibit diverse and brilliant coloration, they have been notably absent from such studies. In the genus Habronattus, females are drab and cryptic while males are brilliantly colored, displaying some of these colors to females during elaborate courtship dances. Here I test multiple hypotheses for the control and function of male color. In the field, I found that Habronattus males indiscriminately court any female they encounter (including other species), so I first examined the role that colors play in species recognition. I manipulated male colors in H. pyrrithrix and found that while they are not required for species recognition, the presence of red facial coloration improves courtship success, but only if males are courting in the sun. Because light environment affects transmission of color signals, the multi-colored displays of males may facilitate communication in variable and unpredictable environments. Because these colors can be costly to produce and maintain, they also have the potential to signal reliable information about male quality to potential female mates. I found that both red facial and green leg coloration is condition dependent in H. pyrrithrix and thus has the potential to signal quality. Yet, surprisingly, this variation in male color does not appear to be important to females. Males of many Habronattus species also exhibit conspicuous markings on the dorsal surface of their abdomens that are not present in females and are oriented away from females during courtship. In the field, I found that these markings are paired with increased leg-waving behavior in a way that resembles the pattern and behavior of wasps; this may provide protection by exploiting the aversions of predators. My data also suggest that different activity levels between the sexes have placed different selection pressures on their dorsal color patterns. Overall, these findings challenge some of the traditional ways that we think about color signaling and provide novel insights into the evolution of animal coloration.
ContributorsTaylor, Lisa Anne (Author) / McGraw, Kevin J. (Thesis advisor) / Clark, David L. (Committee member) / Johnson, James C. (Committee member) / Alcock, John (Committee member) / Rutowski, Ronald L (Committee member) / Arizona State University (Publisher)
Created2012
150967-Thumbnail Image.png
Description
Colorful ornaments in animals often serve as sexually selected signals of quality. While pigment-based colors are well-studied in these regards, structural colors that result from the interaction of light with photonic nanostructures are comparatively understudied in terms of their consequences in social contexts, their costs of production, and even the

Colorful ornaments in animals often serve as sexually selected signals of quality. While pigment-based colors are well-studied in these regards, structural colors that result from the interaction of light with photonic nanostructures are comparatively understudied in terms of their consequences in social contexts, their costs of production, and even the best way to measure them. Iridescent colors are some of the most brilliant and conspicuous colors in nature, and I studied the measurement, condition-dependence, and signaling role of iridescence in Anna's hummingbirds (Calypte anna). While most animal colors are easily quantified using well-established spectrophotometric techniques, the unique characteristics of iridescent colors present challenges to measurement and opportunities to quantify novel color metrics. I designed and tested an apparatus for careful control and measurement of viewing geometry and highly repeatable measurements. These measurements could be used to accurately characterize individual variation in iridescent Anna's hummingbirds to examine their condition-dependence and signaling role. Next, I examined the literature published to date for evidence of condition-dependence of structural colors in birds. Using meta-analyses, I found that structural colors of all three types - white, ultra-violet/blue, and iridescence - are significantly condition-dependent, meaning that they can convey information about quality to conspecifics. I then investigated whether iridescent colors were condition-dependent in Anna's hummingbirds both in a field correlational study and in an experimental study. Throughout the year, I found that iridescent feathers in both male and female Anna's hummingbirds become less brilliant as they age. Color was not correlated with body condition in any age/sex group. However, iridescent coloration in male Anna's hummingbirds was significantly affected by experimental protein in the diet during feather growth, indicating that iridescent color may signal diet quality. Finally, I examined how iridescent colors were used to mediate social competitions in male and female Anna's hummingbirds. Surprisingly, males that were less colorful won significantly more contests than more colorful males, and colorful males received more aggression. Less colorful males may be attempting to drive away colorful neighbors that may be preferred mates. Female iridescent ornament size and color was highly variable, but did not influence contest outcomes or aggression.
ContributorsMeadows, Melissa (Author) / McGraw, Kevin J. (Thesis advisor) / Rutowski, Ronald L (Committee member) / Sabo, John L (Committee member) / Alcock, John (Committee member) / Deviche, Pierre (Committee member) / Arizona State University (Publisher)
Created2012
150916-Thumbnail Image.png
Description
Gene-centric theories of evolution by natural selection have been popularized and remain generally accepted in both scientific and public paradigms. While gene-centrism is certainly parsimonious, its explanations fall short of describing two patterns of evolutionary and social phenomena: the evolution of sex and the evolution of social altruism. I review

Gene-centric theories of evolution by natural selection have been popularized and remain generally accepted in both scientific and public paradigms. While gene-centrism is certainly parsimonious, its explanations fall short of describing two patterns of evolutionary and social phenomena: the evolution of sex and the evolution of social altruism. I review and analyze current theories on the evolution of sex. I then introduce the conflict presented to gene-centric evolution by social phenomena such as altruism and caste sterility in eusocial insects. I review gene-centric models of inclusive fitness and kin selection proposed by Hamilton and Maynard Smith. Based their assumptions, that relatedness should be equal between sterile workers and reproductives, I present several empirical examples that conflict with their models. Following that, I introduce a unique system of genetic caste determination (GCD) observed in hybrid populations of two sister-species of seed harvester ants, Pogonomyrmex rugosus and Pogonomyrmex barbatus. I review the evidence for GCD in those species, followed by a critique of the current gene-centric models used to explain it. In chapter two I present my own theoretical model that is both simple and extricable in nature to explain the origin, evolution, and maintenance of GCD in Pogonomyrmex. Furthermore, I use that model to fill in the gaps left behind by the contributing authors of the other GCD models. As both populations in my study system formed from inter-specific hybridization, I review modern discussions of heterosis (also called hybrid vigor) and use those to help explain the ecological competitiveness of GCD. I empirically address the inbreeding depression the lineages of GCD must overcome in order to remain ecologically stable, demonstrating that as a result of their unique system of caste determination, GCD lineages have elevated recombination frequencies. I summarize and conclude with an argument for why GCD evolved under selective mechanisms which cannot be considered gene-centric, providing evidence that natural selection can effectively operate on non-heritable genotypes appearing in groups and other social contexts.
ContributorsJacobson, Neal (Author) / Gadau, Juergen (Thesis advisor) / Laubichler, Manfred (Committee member) / Pratt, Stephen (Committee member) / Arizona State University (Publisher)
Created2012
153959-Thumbnail Image.png
Description
Sexual and social signals have long been thought to play an important role in speciation and diversity; hence, investigations of intraspecific communication may lead to important insights regarding key processes of evolution. Though we have learned much about the control, function, and evolution of animal communication by studying several very

Sexual and social signals have long been thought to play an important role in speciation and diversity; hence, investigations of intraspecific communication may lead to important insights regarding key processes of evolution. Though we have learned much about the control, function, and evolution of animal communication by studying several very common signal types, investigating rare classes of signals may provide new information about how and why animals communicate. My dissertation research focused on rapid physiological color change, a rare signal-type used by relatively few taxa. To answer longstanding questions about this rare class of signals, I employed novel methods to measure rapid color change signals of male veiled chameleons Chamaeleo calyptratus in real-time as seen by the intended conspecific receivers, as well as the associated behaviors of signalers and receivers. In the context of agonistic male-male interactions, I found that the brightness achieved by individual males and the speed of color change were the best predictors of aggression and fighting ability. Conversely, I found that rapid skin darkening serves as a signal of submission for male chameleons, reducing aggression from winners when displayed by losers. Additionally, my research revealed that the timing of maximum skin brightness and speed of brightening were the best predictors of maximum bite force and circulating testosterone levels, respectively. Together, these results indicated that different aspects of color change can communicate information about contest strategy, physiology, and performance ability. Lastly, when I experimentally manipulated the external appearance of chameleons, I found that "dishonestly" signaling individuals (i.e. those whose behavior did not match their manipulated color) received higher aggression from unpainted opponents. The increased aggression received by dishonest signalers suggests that social costs play an important role in maintaining the honesty of rapid color change signals in veiled chameleons. Though the color change abilities of chameleons have interested humans since the time of Aristotle, little was previously known about the signal content of such changes. Documenting the behavioral contexts and information content of these signals has provided an important first step in understanding the current function, underlying control mechanisms, and evolutionary origins of this rare signal type.
ContributorsLigon, Russell (Author) / McGraw, Kevin J. (Committee member) / DeNardo, Dale F (Committee member) / Karsten, Kristopher B (Committee member) / Rutowski, Ronald L (Committee member) / Deviche, Pierre (Committee member) / Arizona State University (Publisher)
Created2015
156606-Thumbnail Image.png
Description
Persistent cooperation between unrelated conspecifics rarely occurs in mature eusocial insect societies. In this dissertation, I present evidence of non-kin cooperation in the Nearctic honey ant Myrmecocystus mendax. Using microsatellite markers, I show that mature colonies in the Sierra Ancha Mountain of central Arizona contain multiple unrelated matrilines, an observation

Persistent cooperation between unrelated conspecifics rarely occurs in mature eusocial insect societies. In this dissertation, I present evidence of non-kin cooperation in the Nearctic honey ant Myrmecocystus mendax. Using microsatellite markers, I show that mature colonies in the Sierra Ancha Mountain of central Arizona contain multiple unrelated matrilines, an observation that is consistent with primary polygyny. In contrast, similar analyses suggest that colonies in the Chiricahua Mountains of southeastern Arizona are primarily monogynous. These interpretations are consistent with field and laboratory observations. Whereas cooperative colony founding was observed frequently among groups of Sierra Ancha foundresses, founding in the Chiricahua population was restricted to individual foundresses. Furthermore, Sierra Ancha foundresses successfully established incipient laboratory colonies without undergoing queen culling following emergence of the first workers. Multi-queen laboratory Sierra Ancha colonies also produced more workers and repletes than haplometrotic colonies, and when brood raiding was induced between colonies, queens of those with more workers had a higher survival probability.

Microsatellite analyses of additional locations within the M. mendax range suggest that polygyny is also present in some other populations, especially in central-northern Arizona, albeit at lower frequencies than that in the Sierra Anchas. In addition, analyses of multiple types of genetic data, including microsatellites, the mitochondrial barcoding region, and over 2000 nuclear ultra-conserved elements indicate that M. mendax populations within the southwestern U.S. and northwestern Mexico are geographically structured, with strong support for the existence of two or more divergent clades as well as isolation-by-distance within clades. This structure is further shown to correlate with variation in queen number and hair length, a diagnostic taxonomic feature used to distinguish honey ant species.

Together, these findings suggest that regional ecological pressures (e.g. colony density , climate) may have acted on colony founding and social strategy to select for increasing workforce size and, along with genetic drift, have driven geographically isolated M. mendax populations to differentiate genetically and morphologically. The presence of colony fusion in the laboratory and life history traits in honey ant that are influenced by colony size, including repletism, brood raiding, and tournament, support this evolutionary scenario.
ContributorsEriksson, Ti (Author) / Gadau, Jürgen (Thesis advisor) / Taylor, Jay (Thesis advisor) / Fewell, Jennifer (Committee member) / Hӧlldobler, Bert (Committee member) / Johnson, Robert (Committee member) / Pratt, Stephen (Committee member) / Arizona State University (Publisher)
Created2018