Matching Items (14)
Filtering by

Clear all filters

Description
Speciation is the fundamental process that has generated the vast diversity of life on earth. The hallmark of speciation is the evolution of barriers to gene flow. These barriers may reduce gene flow either by keeping incipient species from hybridizing at all (pre-zygotic), or by reducing the fitness of hybrids

Speciation is the fundamental process that has generated the vast diversity of life on earth. The hallmark of speciation is the evolution of barriers to gene flow. These barriers may reduce gene flow either by keeping incipient species from hybridizing at all (pre-zygotic), or by reducing the fitness of hybrids (post-zygotic). To understand the genetic architecture of these barriers and how they evolve, I studied a genus of wasps that exhibits barriers to gene flow that act both pre- and post-zygotically. Nasonia is a genus of four species of parasitoid wasps that can be hybridized in the laboratory. When two of these species, N. vitripennis and N. giraulti are mated, their offspring suffer, depending on the generation and cross examined, up to 80% mortality during larval development due to incompatible genic interactions between their nuclear and mitochondrial genomes. These species also exhibit pre-zygotic isolation, meaning they are more likely to mate with their own species when given the choice. I examined these two species and their hybrids to determine the genetic and physiological bases of both speciation mechanisms and to understand the evolutionary forces leading to them. I present results that indicate that the oxidative phosphorylation (OXPHOS) pathway, an essential pathway that is responsible for mitochondrial energy generation, is impaired in hybrids of these two species. These results indicate that this impairment is due to the unique evolutionary dynamics of the combined nuclear and mitochondrial origin of this pathway. I also present results showing that, as larvae, these hybrids experience retarded growth linked to the previously observed mortality and I explore possible physiological mechanisms for this. Finally, I show that the pre-mating isolation is due to a change in a single pheromone component in N. vitripennis males, that this change is under simple genetic control, and that it evolved neutrally before being co-opted as a species recognition signal. These results are an important addition to our overall understanding of the mechanisms of speciation and showcase Nasonia as an emerging model for the study of the genetics of speciation.
ContributorsGibson, Joshua D (Author) / Gadau, Jürgen (Thesis advisor) / Harrison, Jon (Committee member) / Pratt, Stephen (Committee member) / Verrelli, Brian (Committee member) / Willis, Wayne (Committee member) / Arizona State University (Publisher)
Created2013
152055-Thumbnail Image.png
Description
To address the need of scientists and engineers in the United States workforce and ensure that students in higher education become scientifically literate, research and policy has called for improvements in undergraduate education in the sciences. One particular pathway for improving undergraduate education in the science fields is to reform

To address the need of scientists and engineers in the United States workforce and ensure that students in higher education become scientifically literate, research and policy has called for improvements in undergraduate education in the sciences. One particular pathway for improving undergraduate education in the science fields is to reform undergraduate teaching. Only a limited number of studies have explored the pedagogical content knowledge of postsecondary level teachers. This study was conducted to characterize the PCK of biology faculty and explore the factors influencing their PCK. Data included semi-structured interviews, classroom observations, documents, and instructional artifacts. A qualitative inquiry was designed to conduct an in-depth investigation focusing on the PCK of six biology instructors, particularly the types of knowledge they used for teaching biology, their perceptions of teaching, and the social interactions and experiences that influenced their PCK. The findings of this study reveal that the PCK of the biology faculty included eight domains of knowledge: (1) content, (2) context, (3) learners and learning, (4) curriculum, (5) instructional strategies, (6) representations of biology, (7) assessment, and (8) building rapport with students. Three categories of faculty PCK emerged: (1) PCK as an expert explainer, (2) PCK as an instructional architect, and (3) a transitional PCK, which fell between the two prior categories. Based on the interpretations of the data, four social interactions and experiences were found to influence biology faculty PCK: (1) teaching experience, (2) models and mentors, (3) collaborations about teaching, and (4) science education research. The varying teaching perspectives of the faculty also influenced their PCK. This study shows that the PCK of biology faculty for teaching large introductory courses at large research institutions is heavily influenced by factors beyond simply years of teaching experience and expert content knowledge. Social interactions and experiences created by the institution play a significant role in developing the PCK of biology faculty.
ContributorsHill, Kathleen M. (Author) / Luft, Julie A. (Thesis advisor) / Baker, Dale (Committee member) / Orchinik, Miles (Committee member) / Arizona State University (Publisher)
Created2013
151344-Thumbnail Image.png
Description
At the heart of every eusocial insect colony is a reproductive division of labor. This division can emerge through dominance interactions at the adult stage or through the production of distinct queen and worker castes at the larval stage. In both cases, this division depends on plasticity within an individual

At the heart of every eusocial insect colony is a reproductive division of labor. This division can emerge through dominance interactions at the adult stage or through the production of distinct queen and worker castes at the larval stage. In both cases, this division depends on plasticity within an individual to develop reproductive characteristics or serve as a worker. In order to gain insight into the evolution of reproductive plasticity in the social insects, I investigated caste determination and dominance in the ant Harpegnathos saltator, a species that retains a number of ancestral characteristics. Treatment of worker larvae with a juvenile hormone (JH) analog induced late-instar larvae to develop as queens. At the colony level, workers must have a mechanism to regulate larval development to prevent queens from developing out of season. I identified a new behavior in H. saltator where workers bite larvae to inhibit queen determination. Workers could identify larval caste based on a chemical signal specific to queen-destined larvae, and the production of this signal was directly linked to increased JH levels. This association provides a connection between the physiological factors that induce queen development and the production of a caste-specific larval signal. In addition to caste determination at the larval stage, adult workers of H. saltator compete to establish a reproductive hierarchy. Unlike other social insects, dominance in H. saltator was not related to differences in JH or ecdysteroid levels. Instead, changes in brain levels of biogenic amines, particularly dopamine, were correlated with dominance and reproductive status. Receptor genes for dopamine were expressed in both the brain and ovaries of H. saltator, and this suggests that dopamine may coordinate changes in behavior at the neurological level with ovarian status. Together, these studies build on our understanding of reproductive plasticity in social insects and provide insight into the evolution of a reproductive division of labor.
ContributorsPenick, Clint A (Author) / Liebig, Jürgen (Thesis advisor) / Brent, Colin (Committee member) / Gadau, Jürgen (Committee member) / Hölldobler, Bert (Committee member) / Rutowski, Ron (Committee member) / Arizona State University (Publisher)
Created2012
153216-Thumbnail Image.png
Description
For animals that experience annual cycles of gonad development, the seasonal timing (phenology) of gonad growth is a major adaptation to local environmental conditions. To optimally time seasonal gonad growth, animals use environmental cues that forecast future conditions. The availability of food is one such environmental cue. Although the importance

For animals that experience annual cycles of gonad development, the seasonal timing (phenology) of gonad growth is a major adaptation to local environmental conditions. To optimally time seasonal gonad growth, animals use environmental cues that forecast future conditions. The availability of food is one such environmental cue. Although the importance of food availability has been appreciated for decades, the physiological mechanisms underlying the modulation of seasonal gonad growth by this environmental factor remain poorly understood.

Urbanization is characterized by profound environmental changes, and urban animals must adjust to an environment vastly different from that of their non-urban conspecifics. Evidence suggests that birds adjust to urban areas by advancing the timing of seasonal breeding and gonad development, compared to their non-urban conspecifics. A leading hypothesis to account for this phenomenon is that food availability is elevated in urban areas, which improves the energetic status of urban birds and enables them to initiate gonad development earlier than their non-urban conspecifics. However, this hypothesis remains largely untested.

My dissertation dovetailed comparative studies and experimental approaches conducted in field and captive settings to examine the physiological mechanisms by which food availability modulates gonad growth and to investigate whether elevated food availability in urban areas advances the phenology of gonad growth in urban birds. My captive study demonstrated that energetic status modulates reproductive hormone secretion, but not gonad growth. By contrast, free-ranging urban and non-urban birds did not differ in energetic status or plasma levels of reproductive hormones either in years in which urban birds had advanced phenology of gonad growth or in a year that had no habitat-related disparity in seasonal gonad growth. Therefore, my dissertation provides no support for the hypothesis that urban birds begin seasonal gonad growth because they are in better energetic status and increase the secretion of reproductive hormones earlier than non-urban birds. My studies do suggest, however, that the phenology of key food items and the endocrine responsiveness of the reproductive system may contribute to habitat-related disparities in the phenology of gonad growth.
ContributorsDavies, Scott (Author) / Deviche, Pierre (Thesis advisor) / Sweazea, Karen (Committee member) / McGraw, Kevin (Committee member) / Orchinik, Miles (Committee member) / Warren, Paige (Committee member) / Arizona State University (Publisher)
Created2014
149899-Thumbnail Image.png
Description
Social insect colonies exhibit striking diversity in social organization. Included in this overwhelming variation in structure are differences in colony queen number. The number of queens per colony varies both intra- and interspecifically and has major impacts on the social dynamics of a colony and the fitness of its members.

Social insect colonies exhibit striking diversity in social organization. Included in this overwhelming variation in structure are differences in colony queen number. The number of queens per colony varies both intra- and interspecifically and has major impacts on the social dynamics of a colony and the fitness of its members. To understand the evolutionary transition from single to multi-queen colonies, I examined a species which exhibits variation both in mode of colony founding and in the queen number of mature colonies. The California harvester ant Pogonomyrmex californicus exhibits both variation in the number of queens that begin a colony (metrosis) and in the number of queens in adult colonies (gyny). Throughout most of its range, colonies begin with one queen (haplometrosis) but in some populations multiple queens cooperate to initiate colonies (pleometrosis). I present results that confirm co-foundresses are unrelated. I also map the geographic occurrence of pleometrotic populations and show that the phenomenon appears to be localized in southern California and Northern Baja California. Additionally, I provide genetic evidence that pleometrosis leads to primary polygyny (polygyny developing from pleometrosis) a phenomenon which has received little attention and is poorly understood. Phylogenetic and haplotype analyses utilizing mitochondrial markers reveal that populations of both behavioral types in California are closely related and have low mitochondrial diversity. Nuclear markers however, indicate strong barriers to gene flow between focal populations. I also show that intrinsic differences in queen behavior lead to the two types of populations observed. Even though populations exhibit strong tendencies on average toward haplo- or pleometrosis, within population variation exists among queens for behaviors relevant to metrosis and gyny. These results are important in understanding the dynamics and evolutionary history of a distinct form of cooperation among unrelated social insects. They also help to understand the dynamics of intraspecific variation and the conflicting forces of local adaptation and gene flow.
ContributorsOverson, Rick P (Author) / Gadau, Jürgen (Thesis advisor) / Fewell, Jennifer H (Committee member) / Hölldobler, Bert (Committee member) / Johnson, Robert A. (Committee member) / Liebig, Jürgen (Committee member) / Arizona State University (Publisher)
Created2011
149729-Thumbnail Image.png
Description
Division of labor, whereby different group members perform different functions, is a fundamental attribute of sociality. It appears across social systems, from simple cooperative groups to complex eusocial colonies. A core challenge in sociobiology is to explain how patterns of collective organization are generated. Theoretical models propose that division of

Division of labor, whereby different group members perform different functions, is a fundamental attribute of sociality. It appears across social systems, from simple cooperative groups to complex eusocial colonies. A core challenge in sociobiology is to explain how patterns of collective organization are generated. Theoretical models propose that division of labor self-organizes, or emerges, from interactions among group members and the environment; division of labor is also predicted to scale positively with group size. I empirically investigated the emergence and scaling of division of labor in evolutionarily incipient groups of sweat bees and in eusocial colonies of harvester ants. To test whether division of labor is an emergent property of group living during early social evolution, I created de novo communal groups of the normally solitary sweat bee Lasioglossum (Ctenonomia) NDA-1. A division of labor repeatedly arose between nest excavation and guarding tasks; results were consistent with hypothesized effects of spatial organization and intrinsic behavioral variability. Moreover, an experimental increase in group size spontaneously promoted higher task specialization and division of labor. Next, I examined the influence of colony size on division of labor in larger, more integrated colonies of the harvester ant Pogonomyrmex californicus. Division of labor scaled positively with colony size in two contexts: during early colony ontogeny, as colonies grew from tens to hundreds of workers, and among same-aged colonies that varied naturally in size. However, manipulation of colony size did not elicit a short-term response, suggesting that the scaling of division of labor in P. californicus colonies is a product of functional integration and underlying developmental processes, rather than a purely emergent epiphenomenon. This research provides novel insights into the organization of work in insect societies, and raises broader questions about the role of size in sociobiology.
ContributorsHolbrook, Carter Tate (Author) / Fewell, Jennifer H (Thesis advisor) / Gadau, Jürgen (Committee member) / Harrison, Jon F. (Committee member) / Hölldobler, Berthold (Committee member) / Johnson, Robert A. (Committee member) / Arizona State University (Publisher)
Created2011
151137-Thumbnail Image.png
Description
Though for most of the twentieth century, dogma held that the adult brain was post-mitotic, it is now known that adult neurogenesis is widespread among vertebrates, from fish, amphibians, reptiles and birds to mammals including humans. Seasonal changes in adult neurogenesis are well characterized in the song control system of

Though for most of the twentieth century, dogma held that the adult brain was post-mitotic, it is now known that adult neurogenesis is widespread among vertebrates, from fish, amphibians, reptiles and birds to mammals including humans. Seasonal changes in adult neurogenesis are well characterized in the song control system of song birds, and have been found in seasonally breeding mammals as well. In contrast to more derived vertebrates, such as mammals, where adult neurogenesis is restricted primarily to the olfactory bulb and the dentate gyrus of the hippocampus, neurogenesis is widespread along the ventricles of adult amphibians. I hypothesized that seasonal changes in adult amphibian brain cell proliferation and survival are a potential regulator of reproductive neuroendocrine function. Adult, male American bullfrogs (Rana catesbeiana; aka Lithobates catesbeianus), were maintained in captivity for up to a year under season-appropriate photoperiod. Analysis of hormone levels indicated seasonal changes in plasma testosterone concentration consistent with field studies. Using the thymidine analogue 5-bromo-2-deoxyuridine (BrdU) as a marker for newly generated cells, two differentially regulated aspects of brain cell neogenesis were tracked; that is, proliferation and survival. Seasonal differences were found in BrdU labeling in several brain areas, including the olfactory bulb, medial pallium, nucleus accumbens and the infundibular hypothalamus. Clear seasonal differences were also found in the pars distalis region of the pituitary gland, an important component of neuroendocrine pathways. BrdU labeling was also examined in relation to two neuropeptides important for amphibian reproduction: arginine vasotocin and gonadotropin releasing hormone. No cells co-localized with BrdU and either neuropeptide, but new born cells were found in close proximity to neuropeptide-containing neurons. These data suggest that seasonal differences in brain and pituitary gland cell neogenesis are a potential neuroendocrine regulatory mechanism.
ContributorsMumaw, Luke (Author) / Orchinik, Miles (Thesis advisor) / Deviche, Pierre (Committee member) / Chandler, Douglas (Committee member) / Arizona State University (Publisher)
Created2012
156452-Thumbnail Image.png
Description
Guided by Tinto’s Theory of College Student Departure, I conducted a set of five studies to identify factors that influence students’ social integration in college science active learning classes. These studies were conducted in large-enrollment college science courses and some were specifically conducted in undergraduate active learning biology courses.

Guided by Tinto’s Theory of College Student Departure, I conducted a set of five studies to identify factors that influence students’ social integration in college science active learning classes. These studies were conducted in large-enrollment college science courses and some were specifically conducted in undergraduate active learning biology courses. Using qualitative and quantitative methodologies, I identified how students’ identities, such as their gender and LGBTQIA identity, and students’ perceptions of their own intelligence influence their experience in active learning science classes and consequently their social integration in college. I also determined factors of active learning classrooms and instructor behaviors that can affect whether students experience positive or negative social integration in the context of active learning. I found that students’ hidden identities, such as the LGBTQIA identity, are more relevant in active learning classes where students work together and that the increased relevance of one’s identity can have a positive and negative impact on their social integration. I also found that students’ identities can predict their academic self-concept, or their perception of their intelligence as it compares to others’ intelligence in biology, which in turn predicts their participation in small group-discussion. While many students express a fear of negative evaluation, or dread being evaluated negatively by others when speaking out in active learning classes, I identified that how instructors structure group work can cause students to feel more or less integrated into the college science classroom. Lastly, I identified tools that instructors can use, such as name tents and humor, which can positive affect students’ social integration into the college science classroom. In sum, I highlight inequities in students’ experiences in active learning science classrooms and the mechanisms that underlie some of these inequities. I hope this work can be used to create more inclusive undergraduate active learning science courses.
ContributorsCooper, Katelyn M (Author) / Brownell, Sara E (Thesis advisor) / Stout, Valerie (Committee member) / Collins, James (Committee member) / Orchinik, Miles (Committee member) / Zheng, Yi (Committee member) / Arizona State University (Publisher)
Created2018
156606-Thumbnail Image.png
Description
Persistent cooperation between unrelated conspecifics rarely occurs in mature eusocial insect societies. In this dissertation, I present evidence of non-kin cooperation in the Nearctic honey ant Myrmecocystus mendax. Using microsatellite markers, I show that mature colonies in the Sierra Ancha Mountain of central Arizona contain multiple unrelated matrilines, an observation

Persistent cooperation between unrelated conspecifics rarely occurs in mature eusocial insect societies. In this dissertation, I present evidence of non-kin cooperation in the Nearctic honey ant Myrmecocystus mendax. Using microsatellite markers, I show that mature colonies in the Sierra Ancha Mountain of central Arizona contain multiple unrelated matrilines, an observation that is consistent with primary polygyny. In contrast, similar analyses suggest that colonies in the Chiricahua Mountains of southeastern Arizona are primarily monogynous. These interpretations are consistent with field and laboratory observations. Whereas cooperative colony founding was observed frequently among groups of Sierra Ancha foundresses, founding in the Chiricahua population was restricted to individual foundresses. Furthermore, Sierra Ancha foundresses successfully established incipient laboratory colonies without undergoing queen culling following emergence of the first workers. Multi-queen laboratory Sierra Ancha colonies also produced more workers and repletes than haplometrotic colonies, and when brood raiding was induced between colonies, queens of those with more workers had a higher survival probability.

Microsatellite analyses of additional locations within the M. mendax range suggest that polygyny is also present in some other populations, especially in central-northern Arizona, albeit at lower frequencies than that in the Sierra Anchas. In addition, analyses of multiple types of genetic data, including microsatellites, the mitochondrial barcoding region, and over 2000 nuclear ultra-conserved elements indicate that M. mendax populations within the southwestern U.S. and northwestern Mexico are geographically structured, with strong support for the existence of two or more divergent clades as well as isolation-by-distance within clades. This structure is further shown to correlate with variation in queen number and hair length, a diagnostic taxonomic feature used to distinguish honey ant species.

Together, these findings suggest that regional ecological pressures (e.g. colony density , climate) may have acted on colony founding and social strategy to select for increasing workforce size and, along with genetic drift, have driven geographically isolated M. mendax populations to differentiate genetically and morphologically. The presence of colony fusion in the laboratory and life history traits in honey ant that are influenced by colony size, including repletism, brood raiding, and tournament, support this evolutionary scenario.
ContributorsEriksson, Ti (Author) / Gadau, Jürgen (Thesis advisor) / Taylor, Jay (Thesis advisor) / Fewell, Jennifer (Committee member) / Hӧlldobler, Bert (Committee member) / Johnson, Robert (Committee member) / Pratt, Stephen (Committee member) / Arizona State University (Publisher)
Created2018
154806-Thumbnail Image.png
Description
The most abundantly studied societies, with the exception of humans, are those of the eusocial insects, which include all ants. Eusocial insect societies are typically composed of many dozens to millions of individuals, referred to as nestmates, which require some form of communication to maintain colony cohesion and coordinate the

The most abundantly studied societies, with the exception of humans, are those of the eusocial insects, which include all ants. Eusocial insect societies are typically composed of many dozens to millions of individuals, referred to as nestmates, which require some form of communication to maintain colony cohesion and coordinate the activities within them. Nestmate recognition is the process of distinguishing between nestmates and non-nestmates, and embodies the first line of defense for social insect colonies. In ants, nestmate recognition is widely thought to occur through olfactory cues found on the exterior surfaces of individuals. These cues, called cuticular hydrocarbons (CHCs), comprise the overwhelming majority of ant nestmate profiles and help maintain colony identity. In this dissertation, I investigate how nestmate recognition is influenced by evolutionary, ontogenetic, and environmental factors. First, I contributed to the sequencing and description of three ant genomes including the red harvester ant, Pogonomyrmex barbatus, presented in detail here. Next, I studied how variation in nestmate cues may be shaped through evolution by comparatively studying a family of genes involved in fatty acid and hydrocarbon biosynthesis, i.e., the acyl-CoA desaturases, across seven ant species in comparison with other social and solitary insects. Then, I tested how genetic, developmental, and social factors influence CHC profile variation in P. barbatus, through a three-part study. (1) I conducted a descriptive, correlative study of desaturase gene expression and CHC variation in P. barbatus workers and queens; (2) I explored how larger-scale genetic variation in the P. barbatus species complex influences CHC variation across two genetically isolated lineages (J1/J2 genetic caste determining lineages); and (3) I experimentally examined how CHC development is influenced by an individual’s social environment. In the final part of my work, I resolved discrepancies between previous findings of nestmate recognition behavior in P. barbatus by studying how factors of territorial experience, i.e., spatiotemporal relationships, affect aggressive behaviors among red harvester ant colonies. Through this research, I was able to identify promising methodological approaches and candidate genes, which both broadens our understanding of P. barbatus nestmate recognition systems and supports future functional genetic studies of CHCs in ants.
ContributorsCash, Elizabeth I (Author) / Gadau, Jürgen (Thesis advisor) / Liebig, Jürgen (Thesis advisor) / Fewell, Jennifer (Committee member) / Hölldobler, Berthold (Committee member) / Kusumi, Kenro (Committee member) / Arizona State University (Publisher)
Created2016