Matching Items (13)
Filtering by

Clear all filters

149885-Thumbnail Image.png
Description
The cyanobacterium Synechocystis sp. PCC 6803 performs oxygenic photosynthesis. Light energy conversion in photosynthesis takes place in photosystem I (PSI) and photosystem II (PSII) that contain chlorophyll, which absorbs light energy that is utilized as a driving force for photosynthesis. However, excess light energy may lead to formation of reactive

The cyanobacterium Synechocystis sp. PCC 6803 performs oxygenic photosynthesis. Light energy conversion in photosynthesis takes place in photosystem I (PSI) and photosystem II (PSII) that contain chlorophyll, which absorbs light energy that is utilized as a driving force for photosynthesis. However, excess light energy may lead to formation of reactive oxygen species that cause damage to photosynthetic complexes, which subsequently need repair or replacement. To gain insight in the degradation/biogenesis dynamics of the photosystems, the lifetimes of photosynthetic proteins and chlorophyll were determined by a combined stable-isotope (15N) and mass spectrometry method. The lifetimes of PSII and PSI proteins ranged from 1-33 and 30-75 hours, respectively. Interestingly, chlorophyll had longer lifetimes than the chlorophyll-binding proteins in these photosystems. Therefore, photosynthetic proteins turn over and are replaced independently from each other, and chlorophyll is recycled from the damaged chlorophyll-binding proteins. In Synechocystis, there are five small Cab-like proteins (SCPs: ScpA-E) that share chlorophyll a/b-binding motifs with LHC proteins in plants. SCPs appear to transiently bind chlorophyll and to regulate chlorophyll biosynthesis. In this study, the association of ScpB, ScpC, and ScpD with damaged and repaired PSII was demonstrated. Moreover, in a mutant lacking SCPs, most PSII protein lifetimes were unaffected but the lifetime of chlorophyll was decreased, and one of the nascent PSII complexes was missing. SCPs appear to bind PSII chlorophyll while PSII is repaired, and SCPs stabilize nascent PSII complexes. Furthermore, aminolevulinic acid biosynthesis, an early step of chlorophyll biosynthesis, was impaired in the absence of SCPs, so that the amount of chlorophyll in the cells was reduced. Finally, a deletion mutation was introduced into the sll1906 gene, encoding a member of the putative bacteriochlorophyll delivery (BCD) protein family. The Sll1906 sequence contains possible chlorophyll-binding sites, and its homolog in purple bacteria functions in proper assembly of light-harvesting complexes. However, the sll1906 deletion did not affect chlorophyll degradation/biosynthesis and photosystem assembly. Other (parallel) pathways may exist that may fully compensate for the lack of Sll1906. This study has highlighted the dynamics of photosynthetic complexes in their biogenesis and turnover and the coordination between synthesis of chlorophyll and photosynthetic proteins.
ContributorsYao, Cheng I Daniel (Author) / Vermaas, Wim (Thesis advisor) / Fromme, Petra (Committee member) / Roberson, Robert (Committee member) / Webber, Andrew (Committee member) / Arizona State University (Publisher)
Created2011
151184-Thumbnail Image.png
Description
Here I present a phylogeographic study of at least six reproductively isolated lineages of harvester ants within the Pogonomyrmex barbatus and P. rugosus species group. The genetic and geographic relationships within this clade are complex: four of the identified lineages are divided into two pairs, and each pair has evolved

Here I present a phylogeographic study of at least six reproductively isolated lineages of harvester ants within the Pogonomyrmex barbatus and P. rugosus species group. The genetic and geographic relationships within this clade are complex: four of the identified lineages are divided into two pairs, and each pair has evolved under a mutualistic system that necessitates sympatry. These paired lineages are dependent upon one another because interlineage matings within each pair are the sole source of hybrid F1 workers; these workers build and sustain the colonies, facilitating the production of the reproductive caste, which results solely from intralineage fertilizations. This system of genetic caste determination (GCD) maintains genetic isolation among these closely related lineages, while simultaneously requiring co-expansion and emigration as their distributions have changed over time. Previous studies have also demonstrated that three of the four lineages displaying this unique genetic caste determination phenotype are of hybrid origin. Thus, reconstructing the phylogenetic and geographic history of this group allows us to evaluate past insights and plan future inquiries in a more complete historical biogeographic context. Using mitochondrial DNA sequences sampled across most of the morphospecies' ranges in the U.S. and Mexico, I employed several methods of phylogenetic and DNA sequence analysis, along with comparisons to geological, biogeographic, and phylogeographic studies throughout the sampled regions. These analyses on Pogonomyrmex harvester ants reveal a complex pattern of vicariance and dispersal that is largely concordant with models of late Miocene, Pliocene, and Pleistocene range shifts among various arid-adapted taxa in North America.
ContributorsMott, Brendon (Author) / Gadau, Juergen (Thesis advisor) / Fewell, Jennifer (Committee member) / Anderson, Kirk (Committee member) / Arizona State University (Publisher)
Created2012
135130-Thumbnail Image.png
Description
Division of Labor among social insects is frequently discussed in regards to the colony's worker population. However, before a colony achieves a worker population, a queen is required to perform all of the tasks necessary for her survival: foraging, building the colony, and brood care. A simple ODE model was

Division of Labor among social insects is frequently discussed in regards to the colony's worker population. However, before a colony achieves a worker population, a queen is required to perform all of the tasks necessary for her survival: foraging, building the colony, and brood care. A simple ODE model was developed through the use of a framework of replicator equations in dynamical environments to investigate how queen ants perform and distribute all of the tasks necessary for her and her colony's survival by incorporating individual internal thresholds and environmental stimulus. Modi�cations to the internal threshold, risk of performing the task, and the rate of increase of the environmental stimulus were also explored. Because of the simplicity of the model, it could also be used to measure the task performance of larger populations of social insects. However, the model has only been applied to the data collected from Pogonomyrmex barbatus single queen ants.
ContributorsKincade, Katherine Margaret (Author) / Kang, Yun (Thesis director) / Fewell, Jennifer (Committee member) / Lanchier, Nicolas (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
171918-Thumbnail Image.png
Description
Dominance behavior can regulate a division of labor in a group, such as that between reproductive and non-reproductive individuals. Manipulations of insect societies in a controlled environment can reveal how dominance behavior is regulated. Here, I examined how morphological caste, fecundity, group size, and age influence the expression of

Dominance behavior can regulate a division of labor in a group, such as that between reproductive and non-reproductive individuals. Manipulations of insect societies in a controlled environment can reveal how dominance behavior is regulated. Here, I examined how morphological caste, fecundity, group size, and age influence the expression of dominance behavior using the ponerine ant Harpegnathos saltator. All H. saltator females have the ability to reproduce. Only those with a queen morphology that enables dispersal, however, show putative sex pheromones. In contrast, those with a worker morphology normally express dominance behavior. To evaluate how worker-like dominance behavior and associated traits could be expressed in queens, I removed the wings from alate gynes, those with a queen morphology who had not yet mated or left the nest, making them dealate. Compared to gynes with attached wings, dealates frequently performed dominance behavior. In addition, only the dealates demonstrated worker-like ovarian activity in the presence of reproductive individuals, whereas gynes with wings produced sex pheromones exclusively. Therefore, the attachment of wings determines a gyne’s expression of worker-like dominance behavior and physiology. When the queen dies, workers establish a reproductive hierarchy among themselves by performing a combination of dominance behaviors. To understand how reproductive status depends on these interactions as well as a worker’s age, I measured the frequency of dominance behaviors in groups of different size composed of young and old workers. The number of workers who expressed dominance scaled with the size of the group, but younger ones were more likely to express dominance behavior and eventually become reproductive. Therefore, the predisposition of age integrates with a self-organized process to form this reproductive hierarchy. A social insect’s fecundity and fertility signal depends on social context because fecundity increases with colony size. To evaluate how a socially dependent signal regulates dominance behavior, I manipulated a reproductive worker’s social context. Reproductive workers with reduced fecundity and a less prominent fertility signal expressed more dominance behavior than those with a stronger fertility signal and higher fecundity. Therefore, dominance behavior reinforces rank to compensate for a weak signal, indicating how social context can feed back to influence the maintenance of dominance. Mechanisms that regulate H. saltator’s reproductive hierarchy can inform how the reproductive division of labor is regulated in other groups of animals.
ContributorsPyenson, Benjamin (Author) / Liebig, Jürgen (Thesis advisor) / Hölldobler, Bert (Committee member) / Fewell, Jennifer (Committee member) / Pratt, Stephen (Committee member) / Kang, Yun (Committee member) / Arizona State University (Publisher)
Created2022
Description
The partitioning of photosynthates between their sites of production (source) and their sites of utilization (sink) is a major determinant of crop yield and the potential of regulating this translocation promises substantial opportunities for yield increases. Ubiquitous overexpression of the plant type I proton pyrophosphatase (H+-PPase) in crops improves several

The partitioning of photosynthates between their sites of production (source) and their sites of utilization (sink) is a major determinant of crop yield and the potential of regulating this translocation promises substantial opportunities for yield increases. Ubiquitous overexpression of the plant type I proton pyrophosphatase (H+-PPase) in crops improves several valuable traits including salt tolerance and drought resistance, nutrient and water use efficiencies, and increased root biomass and yield. Originally, type I H+-PPases were described as pyrophosphate (PPi)-dependent proton pumps localized exclusively in vacuoles of mesophyll and meristematic tissues. It has been proposed that in the meristematic tissues, the role of this enzyme would be hydrolyzing PPi originated in biosynthetic reactions and favoring sink strength. Interestingly, this enzyme has been also localized at the plasma membrane of companion cells in the phloem which load and transport photosynthates from source leaves to sinks. Of note, the plasma membrane-localized H+-PPase could only function as a PPi-synthase in these cells due to the steep proton gradient between the apoplast and cytosol. The generated PPi would favor active sucrose loading through the sucrose/proton symporter in the phloem by promoting sucrose hydrolysis through the Sucrose Synthase pathway and providing the ATP required to maintain the proton gradient. To better understand these two different roles of type I H+-PPases, a series of Arabidopsis thaliana transgenic plants were generated. By expressing soluble pyrophosphatases in companion cells of Col-0 ecotype and H+-PPase mutants, impaired photosynthates partitioning was observed, suggesting phloem-localized H+-PPase could generate the PPi required for sucrose loading. Col-0 plants expressed with either phloem- or meristem-specific AVP1 overexpression cassette and the cross between the two tissue specific lines (Cross) were generated. The results showed that the phloem-specific AVP1-overexpressing plants had increased root hair elongation under limited nutrient conditions and both phloem- and meristem-overexpression of AVP1 contributed to improved rhizosphere acidification and drought resistance. It was concluded that H+-PPases localized in both sink and source tissues regulate plant growth and performance under stress through its versatile enzymatic functions (PPi hydrolase and synthase).
ContributorsLi, Lin (Author) / Park, Yujin (Thesis advisor) / Mangone, Marco (Committee member) / Roberson, Robert (Committee member) / Vermaas, Willem (Committee member) / Arizona State University (Publisher)
Created2022
191030-Thumbnail Image.png
Description
Emerging pathogens present several challenges to medical diagnostics. Primarily, the exponential spread of a novel pathogen through naïve populations require a rapid and overwhelming diagnostic response at the site of outbreak. While point-of-care (PoC) platforms have been developed for detection of antigens, serologic responses, and pathogenic genomes, only nucleic acid

Emerging pathogens present several challenges to medical diagnostics. Primarily, the exponential spread of a novel pathogen through naïve populations require a rapid and overwhelming diagnostic response at the site of outbreak. While point-of-care (PoC) platforms have been developed for detection of antigens, serologic responses, and pathogenic genomes, only nucleic acid diagnostics currently have the potential to be developed and manufactured within weeks of an outbreak owing to the speed of next-generation sequencing and custom DNA synthesis. Among nucleic acid diagnostics, isothermal amplification strategies are uniquely suited for PoC implementation due to their simple instrumentation and lack of thermocycling requirement. Unfortunately, isothermal strategies are currently prone to spurious nonspecific amplification, hindering their specificity and necessitating extensive empirical design pipelines that are both time and resource intensive. In this work, isothermal amplification strategies are extensively compared for their feasibility of implementation in outbreak response scenarios. One such technology, Loop-mediated Amplification (LAMP), is identified as having high-potential for rapid development and PoC deployment. Various approaches to abrogating nonspecific amplification are described including a novel in silico design tool based on coarse-grained simulation of interactions between thermophilic DNA polymerase and DNA strands in isothermal reaction conditions. Nonspecific amplification is shown to be due to stabilization of primer secondary structures by high concentrations of Bst DNA polymerase and a mechanism of micro-complement-mediated cross-priming is demonstrated as causal via nanopore sequencing of nonspecific reaction products. The resulting computational model predicts primer set background in 64% of 67 test assays and its usefulness is illustrated further by determining problematic primers in a West Nile Virus-specific LAMP primer set and optimizing primer 3’ nucleotides to eliminate micro-complements within the reaction, resulting in inhibition of background accumulation. Finally, the emergence of Orthopox monkeypox (MPXV) as a recurring threat is discussed and SimCycle is utilized to develop a novel technique for clade-specific discrimination of MPXV based on bridging viral genomic rearrangements (Bridging LAMP). Bridging LAMP is implemented in a 4-plex microfluidic format and demonstrates 100% sensitivity in detection of 100 copies of viral lysates and 45 crude MPXV-positive patient samples collected during the 2022 Clade IIb outbreak.
ContributorsKnappenberger, Mark Daniel (Author) / Anderson, Karen S (Thesis advisor) / LaBaer, Joshua (Committee member) / Roberson, Robert (Committee member) / Lindsay, Stuart (Committee member) / Arizona State University (Publisher)
Created2023
187818-Thumbnail Image.png
Description
Male reproductive dysfunction accounts for almost half of male infertility cases, yet the signaling mechanisms involved in the male reproductive system remain unclear. Although the exact cause of male reproductive dysfunction varies, obtaining a better understanding of the modulators of smooth muscle contractions may provide new targets for the treatment

Male reproductive dysfunction accounts for almost half of male infertility cases, yet the signaling mechanisms involved in the male reproductive system remain unclear. Although the exact cause of male reproductive dysfunction varies, obtaining a better understanding of the modulators of smooth muscle contractions may provide new targets for the treatment of male reproductive conditions. The male reproductive tract, consisting of the testes, epididymis, vas deferens, and penis, is lined with innervated smooth muscle fibers that transport spermatozoa through the system. Contractions of these smooth muscle fibers can be modulated by neurotransmitters and hormones, like dopamine and norepinephrine, as well as biogenic amines. The focus of this study is on the biogenic amine tyramine, which is produced by the breakdown of tyrosine via decarboxylation. Tyramine has been shown to modulate vasoconstriction and increase blood pressure due to its effect on smooth muscle contractions. This study has found that tyramine localizes in male reproductive tissues and modulates smooth muscle contractions. Age and environment were also found to play a significant role in the expression of tyramine and its associated receptor, TAAR1.
ContributorsSteadman, Solange (Author) / Baluch, Debra (Thesis advisor) / Roberson, Robert (Committee member) / Sweazea, Karen (Committee member) / Arizona State University (Publisher)
Created2023
187535-Thumbnail Image.png
Description
Human preterm labor is the single most significant issue in modern obstetrics andgynecology, affecting ten percent of pregnancies, constituting the leading cause of infant death, and contributing significantly to chronic childhood disease. Obstetricians and reproductive scientists are faced with the major challenge of trying to increase the understanding of the

Human preterm labor is the single most significant issue in modern obstetrics andgynecology, affecting ten percent of pregnancies, constituting the leading cause of infant death, and contributing significantly to chronic childhood disease. Obstetricians and reproductive scientists are faced with the major challenge of trying to increase the understanding of the complex molecular and cellular signals that regulate uterine activity during human pregnancy and labor. Even though preterm labor accounts for a large portion of perinatal mortality and morbidity, there still is not an effective therapeutic strategy for the treatment or prevention of preterm labor. This dissertation presents tyramine as an alternative modulator of uterine activity. In this dissertation the aims were as follows: 1) to investigate the localization of tyramine and trace amine associated receptor 1 (TAAR1) in the mouse uterine horn using immunohistochemistry as well as confirm the presence of tyramine in the uterine tissue using high performance liquid chromatography, 2) identify which TAAR 1-9 subtypes were present in the mouse uterine horn using RT-qPCR, 3) investigate ultrastructural differences in the mouse uterine horn following tyramine and dopamine treatment using transmission electron microscopy and 4) investigate pinopod ultrastructure as well as pinopod ultrastructural differences following tyramine and dopamine treatment. The research presented in this dissertation showed: 1) tyramine has very specific localization in the mouse endometrium, mainly in the uterine glands, TAAR1 is localized all throughout the perimetrium, myometrium and endometrium, and that tyramine was confirmed and quantified using HPLC, 2) TAAR 1- 9 genes are expressed in trace levels in the mouse uterine horn, 3) tyramine influences changes in endometrial ultrastructure, and 4) tyramine influences changes in pinopod ultrastructure. Ultimately these findings can help with identifying novel treatment options not only for spontaneous preterm labor contractions but also for other uterine related disorders.
ContributorsObayomi, SM Bukola (Author) / Baluch, Debra P (Thesis advisor) / Roberson, Robert (Thesis advisor) / Sweazea, Karen (Committee member) / Brent, Colin (Committee member) / Arizona State University (Publisher)
Created2023
156606-Thumbnail Image.png
Description
Persistent cooperation between unrelated conspecifics rarely occurs in mature eusocial insect societies. In this dissertation, I present evidence of non-kin cooperation in the Nearctic honey ant Myrmecocystus mendax. Using microsatellite markers, I show that mature colonies in the Sierra Ancha Mountain of central Arizona contain multiple unrelated matrilines, an observation

Persistent cooperation between unrelated conspecifics rarely occurs in mature eusocial insect societies. In this dissertation, I present evidence of non-kin cooperation in the Nearctic honey ant Myrmecocystus mendax. Using microsatellite markers, I show that mature colonies in the Sierra Ancha Mountain of central Arizona contain multiple unrelated matrilines, an observation that is consistent with primary polygyny. In contrast, similar analyses suggest that colonies in the Chiricahua Mountains of southeastern Arizona are primarily monogynous. These interpretations are consistent with field and laboratory observations. Whereas cooperative colony founding was observed frequently among groups of Sierra Ancha foundresses, founding in the Chiricahua population was restricted to individual foundresses. Furthermore, Sierra Ancha foundresses successfully established incipient laboratory colonies without undergoing queen culling following emergence of the first workers. Multi-queen laboratory Sierra Ancha colonies also produced more workers and repletes than haplometrotic colonies, and when brood raiding was induced between colonies, queens of those with more workers had a higher survival probability.

Microsatellite analyses of additional locations within the M. mendax range suggest that polygyny is also present in some other populations, especially in central-northern Arizona, albeit at lower frequencies than that in the Sierra Anchas. In addition, analyses of multiple types of genetic data, including microsatellites, the mitochondrial barcoding region, and over 2000 nuclear ultra-conserved elements indicate that M. mendax populations within the southwestern U.S. and northwestern Mexico are geographically structured, with strong support for the existence of two or more divergent clades as well as isolation-by-distance within clades. This structure is further shown to correlate with variation in queen number and hair length, a diagnostic taxonomic feature used to distinguish honey ant species.

Together, these findings suggest that regional ecological pressures (e.g. colony density , climate) may have acted on colony founding and social strategy to select for increasing workforce size and, along with genetic drift, have driven geographically isolated M. mendax populations to differentiate genetically and morphologically. The presence of colony fusion in the laboratory and life history traits in honey ant that are influenced by colony size, including repletism, brood raiding, and tournament, support this evolutionary scenario.
ContributorsEriksson, Ti (Author) / Gadau, Jürgen (Thesis advisor) / Taylor, Jay (Thesis advisor) / Fewell, Jennifer (Committee member) / Hӧlldobler, Bert (Committee member) / Johnson, Robert (Committee member) / Pratt, Stephen (Committee member) / Arizona State University (Publisher)
Created2018
154806-Thumbnail Image.png
Description
The most abundantly studied societies, with the exception of humans, are those of the eusocial insects, which include all ants. Eusocial insect societies are typically composed of many dozens to millions of individuals, referred to as nestmates, which require some form of communication to maintain colony cohesion and coordinate the

The most abundantly studied societies, with the exception of humans, are those of the eusocial insects, which include all ants. Eusocial insect societies are typically composed of many dozens to millions of individuals, referred to as nestmates, which require some form of communication to maintain colony cohesion and coordinate the activities within them. Nestmate recognition is the process of distinguishing between nestmates and non-nestmates, and embodies the first line of defense for social insect colonies. In ants, nestmate recognition is widely thought to occur through olfactory cues found on the exterior surfaces of individuals. These cues, called cuticular hydrocarbons (CHCs), comprise the overwhelming majority of ant nestmate profiles and help maintain colony identity. In this dissertation, I investigate how nestmate recognition is influenced by evolutionary, ontogenetic, and environmental factors. First, I contributed to the sequencing and description of three ant genomes including the red harvester ant, Pogonomyrmex barbatus, presented in detail here. Next, I studied how variation in nestmate cues may be shaped through evolution by comparatively studying a family of genes involved in fatty acid and hydrocarbon biosynthesis, i.e., the acyl-CoA desaturases, across seven ant species in comparison with other social and solitary insects. Then, I tested how genetic, developmental, and social factors influence CHC profile variation in P. barbatus, through a three-part study. (1) I conducted a descriptive, correlative study of desaturase gene expression and CHC variation in P. barbatus workers and queens; (2) I explored how larger-scale genetic variation in the P. barbatus species complex influences CHC variation across two genetically isolated lineages (J1/J2 genetic caste determining lineages); and (3) I experimentally examined how CHC development is influenced by an individual’s social environment. In the final part of my work, I resolved discrepancies between previous findings of nestmate recognition behavior in P. barbatus by studying how factors of territorial experience, i.e., spatiotemporal relationships, affect aggressive behaviors among red harvester ant colonies. Through this research, I was able to identify promising methodological approaches and candidate genes, which both broadens our understanding of P. barbatus nestmate recognition systems and supports future functional genetic studies of CHCs in ants.
ContributorsCash, Elizabeth I (Author) / Gadau, Jürgen (Thesis advisor) / Liebig, Jürgen (Thesis advisor) / Fewell, Jennifer (Committee member) / Hölldobler, Berthold (Committee member) / Kusumi, Kenro (Committee member) / Arizona State University (Publisher)
Created2016