Matching Items (2)
Filtering by

Clear all filters

155139-Thumbnail Image.png
Description
Cell adhesion is an important aspect of many biological processes. The atomic force microscope (AFM) has made it possible to quantify the forces involved in cellular adhesion using a technique called single cell force spectroscopy (SCFS). AFM based SCFS offers versatile control over experimental conditions for probing directly the interaction

Cell adhesion is an important aspect of many biological processes. The atomic force microscope (AFM) has made it possible to quantify the forces involved in cellular adhesion using a technique called single cell force spectroscopy (SCFS). AFM based SCFS offers versatile control over experimental conditions for probing directly the interaction between specific cell types and specific proteins, surfaces, or other cells. Transmembrane integrins are the primary proteins involved in cellular adhesion to the extra cellular matix (ECM). One of the chief integrins involved in the adhesion of leukocyte cells is αMβ2 (Mac-1). The experiments in this dissertation quantify the adhesion of Mac-1 expressing human embryonic kidney (HEK Mac-1), platelets, and neutrophils cells on substrates with different concentrations of fibrinogen and on fibrin gels and multi-layered fibrinogen coated fibrin gels. It was shown that multi-layered fibrinogen reduces the adhesion force of these cells considerably. A novel method was developed as part of this research combining total internal reflection microscopy (TIRFM) with SCFS allowing for optical microscopy of HEK Mac-1 cells interacting with bovine serum albumin (BSA) coated glass after interacting with multi-layered fibrinogen. HEK Mac-1 cells are able to remove fibrinogen molecules from the multi-layered fibrinogen matrix. An analysis methodology for quantifying the kinetic parameters of integrin-ligand interactions from SCFS experiments is proposed, and the kinetic parameters of the Mac-1 fibrinogen bond are quantified. Additional SCFS experiments quantify the adhesion of macrophages and HEK Mac-1 cells on functionalized glass surfaces and normal glass surfaces. Both cell types show highest adhesion on a novel functionalized glass surface that was prepared to induce macrophage fusion. These experiments demonstrate the versatility of AFM based SCFS, and how it can be applied to address many questions in cellular biology offering quantitative insights.
ContributorsChristenson, Wayne B (Author) / Ros, Robert (Thesis advisor) / Beckstein, Oliver (Committee member) / Lindsay, Stuart (Committee member) / Ugarova, Tatiana (Committee member) / Arizona State University (Publisher)
Created2016
149540-Thumbnail Image.png
Description
This dissertation features a compilation of studies concerning the biophysics of multicellular systems. I explore eukaryotic systems across length scales of the cell cytoskeleton to macroscopic scales of tissues. I begin with a general overview of the natural phenomena of life and a philosophy of investigating developmental systems in biology.

This dissertation features a compilation of studies concerning the biophysics of multicellular systems. I explore eukaryotic systems across length scales of the cell cytoskeleton to macroscopic scales of tissues. I begin with a general overview of the natural phenomena of life and a philosophy of investigating developmental systems in biology. The topics covered throughout this dissertation require a background in eukaryotic cell physiology, viscoelasticity, and processes of embryonic tissue morphogenesis. Following a brief background on these topics, I present an overview of the Subcellular Element Model (ScEM). This is a modeling framework which allows one to compute the dynamics of large numbers of three-dimensional deformable cells in multi-cellular systems. A primary focus of the work presented here is implementing cellular function within the framework of this model to produce biologically meaningful phenotypes. In this way, it is hoped that this modeling may inform biological understanding of the underlying mechanisms which manifest into a given cell or tissue scale phenomenon. Thus, all theoretical investigations presented here are motivated by and compared to experimental observations. With the ScEM modeling framework I first explore the passive properties of viscoelastic networks. Then as a direct extension of this work, I consider the active properties of cells, which result in biological behavior and the emergence of non-trivial biological phenotypes in cells and tissues. I then explore the possible role of chemotaxis as a mechanism of orchestrating large scale tissue morphogenesis in the early embryonic stages of amniotes. Finally I discuss the cross-sectional topology of proliferating epithelial tissues. I show how the Subcellular Element Model (ScEM) is a phenomenological model of finite elements whose interactions can be calibrated to describe the viscoelastic properties of biological materials. I further show that implementing mechanisms of cytoskeletal remodeling yields cellular and tissue phenotypes that are more and more biologically realistic. Particularly I show that structural remodeling of the cell cytoskeleton is crucial for large scale cell deformations. I provide supporting evidence that a chemotactic dipole mechanism is able to orchestrate the type of large scale collective cell movement observed in the chick epiblast during gastrulation and primitive streak formation. Finally, I show that cell neighbor histograms provide a potentially unique signature measurement of tissue topology; such measurements may find use in identifying cellular level phenotypes from a single snapshot micrograph.
ContributorsSandersius, Sebastian Ambrose (Author) / Newman, Timothy J (Thesis advisor) / Rez, Peter (Committee member) / Ros, Robert (Committee member) / Sankey, Otto F. (Committee member) / Tsen, Kong-Thon (Committee member) / Arizona State University (Publisher)
Created2011