Matching Items (17)
Filtering by

Clear all filters

149729-Thumbnail Image.png
Description
Division of labor, whereby different group members perform different functions, is a fundamental attribute of sociality. It appears across social systems, from simple cooperative groups to complex eusocial colonies. A core challenge in sociobiology is to explain how patterns of collective organization are generated. Theoretical models propose that division of

Division of labor, whereby different group members perform different functions, is a fundamental attribute of sociality. It appears across social systems, from simple cooperative groups to complex eusocial colonies. A core challenge in sociobiology is to explain how patterns of collective organization are generated. Theoretical models propose that division of labor self-organizes, or emerges, from interactions among group members and the environment; division of labor is also predicted to scale positively with group size. I empirically investigated the emergence and scaling of division of labor in evolutionarily incipient groups of sweat bees and in eusocial colonies of harvester ants. To test whether division of labor is an emergent property of group living during early social evolution, I created de novo communal groups of the normally solitary sweat bee Lasioglossum (Ctenonomia) NDA-1. A division of labor repeatedly arose between nest excavation and guarding tasks; results were consistent with hypothesized effects of spatial organization and intrinsic behavioral variability. Moreover, an experimental increase in group size spontaneously promoted higher task specialization and division of labor. Next, I examined the influence of colony size on division of labor in larger, more integrated colonies of the harvester ant Pogonomyrmex californicus. Division of labor scaled positively with colony size in two contexts: during early colony ontogeny, as colonies grew from tens to hundreds of workers, and among same-aged colonies that varied naturally in size. However, manipulation of colony size did not elicit a short-term response, suggesting that the scaling of division of labor in P. californicus colonies is a product of functional integration and underlying developmental processes, rather than a purely emergent epiphenomenon. This research provides novel insights into the organization of work in insect societies, and raises broader questions about the role of size in sociobiology.
ContributorsHolbrook, Carter Tate (Author) / Fewell, Jennifer H (Thesis advisor) / Gadau, Jürgen (Committee member) / Harrison, Jon F. (Committee member) / Hölldobler, Berthold (Committee member) / Johnson, Robert A. (Committee member) / Arizona State University (Publisher)
Created2011
149899-Thumbnail Image.png
Description
Social insect colonies exhibit striking diversity in social organization. Included in this overwhelming variation in structure are differences in colony queen number. The number of queens per colony varies both intra- and interspecifically and has major impacts on the social dynamics of a colony and the fitness of its members.

Social insect colonies exhibit striking diversity in social organization. Included in this overwhelming variation in structure are differences in colony queen number. The number of queens per colony varies both intra- and interspecifically and has major impacts on the social dynamics of a colony and the fitness of its members. To understand the evolutionary transition from single to multi-queen colonies, I examined a species which exhibits variation both in mode of colony founding and in the queen number of mature colonies. The California harvester ant Pogonomyrmex californicus exhibits both variation in the number of queens that begin a colony (metrosis) and in the number of queens in adult colonies (gyny). Throughout most of its range, colonies begin with one queen (haplometrosis) but in some populations multiple queens cooperate to initiate colonies (pleometrosis). I present results that confirm co-foundresses are unrelated. I also map the geographic occurrence of pleometrotic populations and show that the phenomenon appears to be localized in southern California and Northern Baja California. Additionally, I provide genetic evidence that pleometrosis leads to primary polygyny (polygyny developing from pleometrosis) a phenomenon which has received little attention and is poorly understood. Phylogenetic and haplotype analyses utilizing mitochondrial markers reveal that populations of both behavioral types in California are closely related and have low mitochondrial diversity. Nuclear markers however, indicate strong barriers to gene flow between focal populations. I also show that intrinsic differences in queen behavior lead to the two types of populations observed. Even though populations exhibit strong tendencies on average toward haplo- or pleometrosis, within population variation exists among queens for behaviors relevant to metrosis and gyny. These results are important in understanding the dynamics and evolutionary history of a distinct form of cooperation among unrelated social insects. They also help to understand the dynamics of intraspecific variation and the conflicting forces of local adaptation and gene flow.
ContributorsOverson, Rick P (Author) / Gadau, Jürgen (Thesis advisor) / Fewell, Jennifer H (Committee member) / Hölldobler, Bert (Committee member) / Johnson, Robert A. (Committee member) / Liebig, Jürgen (Committee member) / Arizona State University (Publisher)
Created2011
152411-Thumbnail Image.png
Description
Mathematical modeling of infectious diseases can help public health officials to make decisions related to the mitigation of epidemic outbreaks. However, over or under estimations of the morbidity of any infectious disease can be problematic. Therefore, public health officials can always make use of better models to study the potential

Mathematical modeling of infectious diseases can help public health officials to make decisions related to the mitigation of epidemic outbreaks. However, over or under estimations of the morbidity of any infectious disease can be problematic. Therefore, public health officials can always make use of better models to study the potential implication of their decisions and strategies prior to their implementation. Previous work focuses on the mechanisms underlying the different epidemic waves observed in Mexico during the novel swine origin influenza H1N1 pandemic of 2009 and showed extensions of classical models in epidemiology by adding temporal variations in different parameters that are likely to change during the time course of an epidemic, such as, the influence of media, social distancing, school closures, and how vaccination policies may affect different aspects of the dynamics of an epidemic. This current work further examines the influence of different factors considering the randomness of events by adding stochastic processes to meta-population models. I present three different approaches to compare different stochastic methods by considering discrete and continuous time. For the continuous time stochastic modeling approach I consider the continuous-time Markov chain process using forward Kolmogorov equations, for the discrete time stochastic modeling I consider stochastic differential equations using Wiener's increment and Poisson point increments, and also I consider the discrete-time Markov chain process. These first two stochastic modeling approaches will be presented in a one city and two city epidemic models using, as a base, our deterministic model. The last one will be discussed briefly on a one city SIS and SIR-type model.
ContributorsCruz-Aponte, Maytee (Author) / Wirkus, Stephen A. (Thesis advisor) / Castillo-Chavez, Carlos (Thesis advisor) / Camacho, Erika T. (Committee member) / Kang, Yun (Committee member) / Arizona State University (Publisher)
Created2014
132292-Thumbnail Image.png
Description
In biomedical research institutions and medical institutions alike, whistleblowing, or the reporting of misconduct, has been severely retaliated against. Whistleblowers report misconduct by adhering to institutional whistleblowing policies, and do so in order to maintain ethical practice within their institution; it is important to note that by taking this ethical

In biomedical research institutions and medical institutions alike, whistleblowing, or the reporting of misconduct, has been severely retaliated against. Whistleblowers report misconduct by adhering to institutional whistleblowing policies, and do so in order to maintain ethical practice within their institution; it is important to note that by taking this ethical action, whistleblowers are aiming to protect the future of biomedical research and medicine. Despite these intentions, whistleblowing has developed a negative stigma due to the misconception that whistleblowers have self-proclaimed authority and are unable to function as part of a team. The retaliation against whistleblowers has been connected to psychological and professional fallout for the whistleblower, and it has been found that many whistleblowers suffer as a direct result of a lack of institutional support. The problems with whistleblowing culture demonstrate issues surrounding how ethics are maintained in institutions, who ethics policies apply to, and who has authority. The retaliation seen against whistleblowers outlines inherent institutional failures, and highlights the need for institutional change in order to both promote ethical practice and protect the whistleblowers who adhere to ethics policies. This thesis discusses such failures in detail, and outlines several broad solutions in order to combat this issue.
ContributorsTaylor, Kylee Anne (Author) / Robert, Jason (Thesis director) / Ellison, Karin (Committee member) / Johnson, Nate (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
168531-Thumbnail Image.png
Description
Understanding why animals form social groups is a fundamental aim of sociobiology. To date, the field has been dominated by studies of kin groups, which have emphasized indirect fitness benefits as key drivers of grouping among relatives. Nevertheless, many animal groups are comprised of unrelated individuals. These cases provide unique

Understanding why animals form social groups is a fundamental aim of sociobiology. To date, the field has been dominated by studies of kin groups, which have emphasized indirect fitness benefits as key drivers of grouping among relatives. Nevertheless, many animal groups are comprised of unrelated individuals. These cases provide unique opportunities to illuminate drivers of social evolution beyond indirect fitness, especially ecological factors. This dissertation combines behavioral, physiological, and ecological approaches to explore the conditions that favor group formation among non-kin, using as a model the facultatively social carpenter bee, Xylocopa sonorina. Using behavioral and genetic techniques, I found that nestmates in this species are often unrelated, and that non-kin groups form following extensive inter-nest migration.Group living may arise as a strategy to mitigate constraints on available breeding space. To test the hypothesis that nest construction is prohibitively costly for carpenter bees, I measured metabolic rates of excavating bees and used imaging techniques to quantify nest volumes. From these measurements, I found that nest construction is highly energetically costly, and that bees who inherit nests through social queuing experience substantial energetic savings. These costs are exacerbated by limitations on the reuse of existing nests. Using repeated CT scans of nesting logs, I examined changes in nest architecture over time and found that repeatedly inherited tunnels become indefensible to intruders, and are subsequently abandoned. Together, these factors underlie intense competition over available breeding space. The imaging analysis of nesting logs additionally revealed strong seasonal effects on social strategy, with social nesting dominating during winter. To test the hypothesis that winter social nesting arises from intrinsic physiological advantages of grouping, I experimentally manipulated social strategy in overwintering bees. I found that social bees conserve heat and body mass better than solitary bees, suggesting fitness benefits to grouping in cold, resource-scarce conditions. Together, these results suggest that grouping in X. sonorina arises from dynamic strategies to maximize direct fitness in response to harsh and/or competitive conditions. These studies provide empirical insights into the ecological conditions that favor non-kin grouping, and emphasize the importance of ecology in shaping sociality at its evolutionary origins.
ContributorsOstwald, Madeleine (Author) / Fewell, Jennifer H (Thesis advisor) / Amdam, Gro (Committee member) / Harrison, Jon (Committee member) / Pratt, Stephen (Committee member) / Kapheim, Karen (Committee member) / Arizona State University (Publisher)
Created2022
187874-Thumbnail Image.png
Description
Understanding how and why animals choose what to eat is one of the fundamental goals of nutritional and behavioral biology. This question can be scaled to animals that live in social groups, including eusocial insects. One of the factors that plays an important role in foraging decisions is the prevalence

Understanding how and why animals choose what to eat is one of the fundamental goals of nutritional and behavioral biology. This question can be scaled to animals that live in social groups, including eusocial insects. One of the factors that plays an important role in foraging decisions is the prevalence of specific nutrients and their relative balance. This dissertation explores the role of relative nutrient content in the food selection decisions of a species that is eusocial and also agricultural, the desert leafcutter ant Acromyrmex versicolor. A dietary choice assay, in which the relative amount of protein and carbohydrates in the available diets was varied, demonstrated that A. versicolor colonies regulate relative collection of protein and carbohydrates. Tracking the foraging behavior of individual workers revelaed that foragers vary in their relative collection of experimental diets and in their foraging frequency, but that there is no relationship between these key factors of foraging behavior. The high proportion of carbohydrates preferred by lab colonies suggests that they forage to nutritionally support the fungus rather than brood and workers. To test this, the relative amounts of 1) fungus, and 2) brood (larvae) was manipulated and foraging response was measured. Changing the amount of brood had no effect on foraging. Although decreasing the size of fungus gardens did not change relative P:C collection, it produced significant increases in caloric intake, supporting the assertion that the fungus is the main driver of colony nutrient regulation. The nutritional content of naturally harvested forage material collected from field colonies was measured, as was recruitment to experimental diets with varying relative macronutrient content. Field results confirmed a strong colony preference for high carbohydrate diets. They also indicated that this species may, at times, be limited in its ability to collect sufficiently high levels of carbohydrates to meet optimal intake. This dissertation provides important insights about fundamental aspects of leafcutter ant biology and extends our understanding of the role of relative nutrient content in foraging decisions to systems that span multiple trophic levels.
ContributorsSmith, Nathan Edward (Author) / Fewell, Jennifer H (Thesis advisor) / Harrison, Jon F (Committee member) / Pavlic, Ted (Committee member) / Cease, Arianne (Committee member) / Hoelldobler, Bert (Committee member) / Arizona State University (Publisher)
Created2023
161960-Thumbnail Image.png
Description
In many social groups, reproduction is shared between group members, whocompete for position in the social hierarchy for reproductive dominance. This reproductive conflict can lead to different means of enforcing reproductive differences, such as dominance displays or limited control of social hierarchy through antagonistic encounters. In eusocial insects, archetypal colonies contain a single,

In many social groups, reproduction is shared between group members, whocompete for position in the social hierarchy for reproductive dominance. This reproductive conflict can lead to different means of enforcing reproductive differences, such as dominance displays or limited control of social hierarchy through antagonistic encounters. In eusocial insects, archetypal colonies contain a single, singly-mated fertile queen, such that no reproductive conflict exists within a colony. However, many eusocial insects deviate from this archetype and have multiply-mated queens (polyandry), multiple queens in a single colony (polygyny), or both. In these cases, reproductive conflict exists between the matrilines and patrilines represented in a colony, specifically over the production of sexual offspring. A possible outcome of reproductive conflict may be the emergence of cheating lineages, which favor the production of sexual offspring, taking advantage of the worker force produced by nestmate queens and/or patrilines. In extreme examples, inquiline social parasites may be an evolutionary consequence of reproductive conflict between nestmate queens. Inquiline social parasitism is a type of social parasitism that is usually defined by a partial or total loss of the worker caste, and the “infiltration” of host colonies to take advantage of the host worker force for reproduction. It has been hypothesized that these inquiline social parasites evolve through the speciation of cheating queen lineages from within their incipient host species. This “intra- specific” origin model involves a foundational hypothesis that the common ancestor of host and parasite (and thus, putatively, the host at the time of speciation) should be functionally polygynous, and that parasitism evolves as a “resolution” of reproductive conflict in colonies. In this dissertation, I investigate the hypothesized role of polygyny in the evolution of inquiline social parasites. I use molecular ecology and statistical approaches to validate the role of polygyny in the evolution of some inquiline social parasites. I further discuss potential mechanisms for the evolution and speciation of social parasites, and discuss future directions to elucidate these mechanisms.
ContributorsDahan, Romain Arvid (Author) / Rabeling, Christian (Thesis advisor) / Amdam, Gro V (Committee member) / Fewell, Jennifer H (Committee member) / Pratt, Stephen C (Committee member) / Rüppell, Olav (Committee member) / Arizona State University (Publisher)
Created2021
156639-Thumbnail Image.png
Description
The most advanced social insects, the eusocial insects, form often large societies in which there is reproductive division of labor, queens and workers, have overlapping generations, and cooperative brood care where daughter workers remain in the nest with their queen mother and care for their siblings. The eusocial insects

The most advanced social insects, the eusocial insects, form often large societies in which there is reproductive division of labor, queens and workers, have overlapping generations, and cooperative brood care where daughter workers remain in the nest with their queen mother and care for their siblings. The eusocial insects are composed of representative species of bees and wasps, and all species of ants and termites. Much is known about their organizational structure, but remains to be discovered.

The success of social insects is dependent upon cooperative behavior and adaptive strategies shaped by natural selection that respond to internal or external conditions. The objective of my research was to investigate specific mechanisms that have helped shaped the structure of division of labor observed in social insect colonies, including age polyethism and nutrition, and phenomena known to increase colony survival such as egg cannibalism. I developed various Ordinary Differential Equation (ODE) models in which I applied dynamical, bifurcation, and sensitivity analysis to carefully study and visualize biological outcomes in social organisms to answer questions regarding the conditions under which a colony can survive. First, I investigated how the population and evolutionary dynamics of egg cannibalism and division of labor can promote colony survival. I then introduced a model of social conflict behavior to study the inclusion of different response functions that explore the benefits of cannibalistic behavior and how it contributes to age polyethism, the change in behavior of workers as they age, and its biological relevance. Finally, I introduced a model to investigate the importance of pollen nutritional status in a honeybee colony, how it affects population growth and influences division of labor within the worker caste. My results first reveal that both cannibalism and division of labor are adaptive strategies that increase the size of the worker population, and therefore, the persistence of the colony. I show the importance of food collection, consumption, and processing rates to promote good colony nutrition leading to the coexistence of brood and adult workers. Lastly, I show how taking into account seasonality for pollen collection improves the prediction of long term consequences.
ContributorsRodríguez Messan, Marisabel (Author) / Kang, Yun (Thesis advisor) / Castillo-Chavez, Carlos (Thesis advisor) / Kuang, Yang (Committee member) / Page Jr., Robert E (Committee member) / Gardner, Carl (Committee member) / Arizona State University (Publisher)
Created2018
154969-Thumbnail Image.png
Description
The immune system plays a dual role during neoplastic progression. It can suppress tumor growth by eliminating cancer cells, and also promote neoplastic expansion by either selecting for tumor cells that are fitter to survive in an immunocompetent host or by establishing the right conditions within the tumor microenvironment. First,

The immune system plays a dual role during neoplastic progression. It can suppress tumor growth by eliminating cancer cells, and also promote neoplastic expansion by either selecting for tumor cells that are fitter to survive in an immunocompetent host or by establishing the right conditions within the tumor microenvironment. First, I present a model to study the dynamics of subclonal evolution of cancer. I model selection through time as an epistatic process. That is, the fitness change in a given cell is not simply additive, but depends on previous mutations. Simulation studies indicate that tumors are composed of myriads of small subclones at the time of diagnosis. Because some of these rare subclones harbor pre-existing treatment-resistant mutations, they present a major challenge to precision medicine. Second, I study the question of self and non-self discrimination by the immune system, which is fundamental in the field in cancer immunology. By performing a quantitative analysis of the biochemical properties of thousands of MHC class I peptides, I find that hydrophobicity of T cell receptors contact residues is a hallmark of immunogenic epitopes. Based on these findings, I further develop a computational model to predict immunogenic epitopes which facilitate the development of T cell vaccines against pathogen and tumor antigens. Lastly, I study the effect of early detection in the context of Ebola. I develope a simple mathematical model calibrated to the transmission dynamics of Ebola virus in West Africa. My findings suggest that a strategy that focuses on early diagnosis of high-risk individuals, caregivers, and health-care workers at the pre-symptomatic stage, when combined with public health measures to improve the speed and efficacy of isolation of infectious individuals, can lead to rapid reductions in Ebola transmission.
ContributorsChowell-Puente, Diego (Author) / Castillo-Chavez, Carlos (Thesis advisor) / Anderson, Karen S (Thesis advisor) / Maley, Carlo C (Committee member) / Wilson Sayres, Melissa A (Committee member) / Blattman, Joseph N (Committee member) / Arizona State University (Publisher)
Created2016
152822-Thumbnail Image.png
Description
This study aims to unearth monological and monocultural discourses buried under the power of the dominant biomedical model governing the HIV/AIDS debate. The study responds to an apparent consensus, rooted in Western biomedicine and its "standardizations of knowledge," in the production of the current HIV/AIDS discourse, especially in Sub-Saharan Africa.

This study aims to unearth monological and monocultural discourses buried under the power of the dominant biomedical model governing the HIV/AIDS debate. The study responds to an apparent consensus, rooted in Western biomedicine and its "standardizations of knowledge," in the production of the current HIV/AIDS discourse, especially in Sub-Saharan Africa. As a result, biomedicine has become the dominant actor (in) writing and rewriting discourse for the masses while marginalizing other forms of medical knowledge. Specifically, in its development, the Western biomedical model has arguably isolated the disease from its human host and the social experiences that facilitate the disease's transmission, placing it in the realm of laboratories and scientific experts and giving full ownership to Western medical discourse. Coupled with Western assumptions about African culture that reproduce a one-sided discourse informing the social construction of HIV/AIDS in Africa, this Western monopoly thus constrained the extent and efficacy of international prevention efforts. In this context, the goal for this study is not to demonize the West and biomedicine in general. Rather, this study seeks an alternative and less monolithic understanding currently absent in scientific discourses of HIV/AIDS that frequently elevates Western biomedicine over indigenous medicine; the Western expert over the local. The study takes into account the local voices of Sub-Saharan Africa and how the system has affected them, this study utilizes a Foucauldian approach to analyze discourse as a way to explore how certain ways of knowledge are formed in relation to power. This study also examines how certain knowlege is maintaned and reinforced within specific discourses.
ContributorsAbdalla, Mohamed (Author) / Jacobs, Bertram (Thesis advisor) / Robert, Jason (Committee member) / Klimek, Barbara (Committee member) / Arizona State University (Publisher)
Created2014