Matching Items (15)
Filtering by

Clear all filters

156871-Thumbnail Image.png
Description
Understanding the diversity, evolutionary relationships, and geographic distribution of species is foundational knowledge in biology. However, this knowledge is lacking for many diverse lineages of the tree of life. This is the case for the desert stink beetles in the tribe Amphidorini LeConte, 1862 (Coleoptera: Tenebrionidae) – a lineage of

Understanding the diversity, evolutionary relationships, and geographic distribution of species is foundational knowledge in biology. However, this knowledge is lacking for many diverse lineages of the tree of life. This is the case for the desert stink beetles in the tribe Amphidorini LeConte, 1862 (Coleoptera: Tenebrionidae) – a lineage of arid-adapted flightless beetles found throughout western North America. Four interconnected studies that jointly increase our knowledge of this group are presented. First, the darkling beetle fauna of the Algodones sand dunes in southern California is examined as a case study to explore the scientific practice of checklist creation. An updated list of the species known from this region is presented, with a critical focus on material now made available through digitization and global aggregation. This part concludes with recommendations for future biodiversity checklist authors. Second, the psammophilic genus Trogloderus LeConte, 1879 is revised. Six new species are described, and the first, multi-gene phylogeny for the genus is inferred. In addition, historical biogeographic reconstructions along with novel hypotheses of speciation patterns within the Intermountain Region are given. In particular, the Kaibab Plateau and Kaiparowitz Formation are found to have promoted speciation on the Colorado Plateau. The Owens Valley and prehistoric Bouse Embayment are similarly hypothesized to drive species diversification in southern California. Third, a novel phylogenomic analysis for the tribe Amphidorini is presented, based on 29 de novo partial transcriptomes. Three putative ortholog sets were discovered and analyzed to infer the relationships between species groups and genera. The existing classification of the tribe is found to be highly inadequate, though the earliest-diverging relationships within the tribe are still in question. Finally, the new phylogenetic framework is used to provide a genus-level revision for the Amphidorini, which previously contained six valid genera and 253 valid species. This updated classification includes more than 100 taxonomic changes and results in the revised tribe consisting of 16 genera, with three being described as new to science.
ContributorsJohnston, Murray Andrew (Author) / Franz, Nico M (Thesis advisor) / Cartwright, Reed (Committee member) / Taylor, Jesse (Committee member) / Pigg, Kathleen (Committee member) / Arizona State University (Publisher)
Created2018
Description
The ability to tolerate bouts of oxygen deprivation varies tremendously across the animal kingdom. Adult humans from different regions show large variation in tolerance to hypoxia; additionally, it is widely known that neonatal mammals are much more tolerant to anoxia than their adult counterparts, including in humans. Drosophila melanogaster are

The ability to tolerate bouts of oxygen deprivation varies tremendously across the animal kingdom. Adult humans from different regions show large variation in tolerance to hypoxia; additionally, it is widely known that neonatal mammals are much more tolerant to anoxia than their adult counterparts, including in humans. Drosophila melanogaster are very anoxia-tolerant relative to mammals, with adults able to survive 12 h of anoxia, and represent a well-suited model for studying anoxia tolerance. Drosophila live in rotting, fermenting media and a result are more likely to experience environmental hypoxia; therefore, they could be expected to be more tolerant of anoxia than adults. However, adults have the capacity to survive anoxic exposure times ~8 times longer than larvae. This dissertation focuses on understanding the mechanisms responsible for variation in survival from anoxic exposure in the genetic model organism, Drosophila melanogaster, focused in particular on effects of developmental stage (larval vs. adults) and within-population variation among individuals.

Vertebrate studies suggest that surviving anoxia requires the maintenance of ATP despite the loss of aerobic metabolism in a manner that prevents a disruption of ionic homeostasis. Instead, the abilities to maintain a hypometabolic state with low ATP and tolerate large disturbances in ionic status appear to contribute to the higher anoxia tolerance of adults. Furthermore, metabolomics experiments support this notion by showing that larvae had higher metabolic rates during the initial 30 min of anoxia and that protective metabolites were upregulated in adults but not larvae. Lastly, I investigated the genetic variation in anoxia tolerance using a genome wide association study (GWAS) to identify target genes associated with anoxia tolerance. Results from the GWAS also suggest mechanisms related to protection from ionic and oxidative stress, in addition to a protective role for immune function.
ContributorsCampbell, Jacob B (Author) / Harrison, Jon F. (Thesis advisor) / Gadau, Juergen (Committee member) / Call, Gerald B (Committee member) / Sweazea, Karen L (Committee member) / Rosenberg, Michael S. (Committee member) / Arizona State University (Publisher)
Created2018
156201-Thumbnail Image.png
Description
For interspecific mutualisms, the behavior of one partner can influence the fitness of the other, especially in the case of symbiotic mutualisms where partners live in close physical association for much of their lives. Behavioral effects on fitness may be particularly important if either species in these long-term relationships displays

For interspecific mutualisms, the behavior of one partner can influence the fitness of the other, especially in the case of symbiotic mutualisms where partners live in close physical association for much of their lives. Behavioral effects on fitness may be particularly important if either species in these long-term relationships displays personality. Animal personality is defined as repeatable individual differences in behavior, and how correlations among these consistent traits are structured is termed behavioral syndromes. Animal personality has been broadly documented across the animal kingdom but is poorly understood in the context of mutualisms. My dissertation focuses on the structure, causes, and consequences of collective personality in Azteca constructor colonies that live in Cecropia trees, one of the most successful and prominent mutualisms of the neotropics. These pioneer plants provide hollow internodes for nesting and nutrient-rich food bodies; in return, the ants provide protection from herbivores and encroaching vines. I first explored the structure of the behavioral syndrome by testing the consistency and correlation of colony-level behavioral traits under natural conditions in the field. Traits were both consistent within colonies and correlated among colonies revealing a behavioral syndrome along a docile-aggressive axis. Host plants of more active, aggressive colonies had less leaf damage, suggesting a link between a colony personality and host plant health. I then studied how aspects of colony sociometry are intertwined with their host plants by assessing the relationship among plant growth, colony growth, colony structure, ant morphology, and colony personality. Colony personality was independent of host plant measures like tree size, age, volume. Finally, I tested how colony personality influenced by soil nutrients by assessing personality in the field and transferring colonies to plants the greenhouse under different soil nutrient treatments. Personality was correlated with soil nutrients in the field but was not influenced by soil nutrient treatment in the greenhouse. This suggests that soil nutrients interact with other factors in the environment to structure personality. This dissertation demonstrates that colony personality is an ecologically relevant phenomenon and an important consideration for mutualism dynamics.
ContributorsMarting, Peter (Author) / Pratt, Stephen C (Thesis advisor) / Wcislo, William T (Committee member) / Hoelldobler, Bert (Committee member) / Fewell, Jennifer H (Committee member) / Gadau, Juergen (Committee member) / Arizona State University (Publisher)
Created2018
155980-Thumbnail Image.png
Description
An important component of insect social structure is the number of queens that cohabitate in a colony. Queen number is highly variable between and within species. It can begin at colony initiation when often unrelated queens form cooperative social groups, a strategy known as primary polygyny. The non-kin cooperative groups

An important component of insect social structure is the number of queens that cohabitate in a colony. Queen number is highly variable between and within species. It can begin at colony initiation when often unrelated queens form cooperative social groups, a strategy known as primary polygyny. The non-kin cooperative groups formed by primary polygyny have profound effects on the social dynamics and inclusive fitness benefits within a colony. Despite this, the evolution of non-kin queen cooperation has been relatively overlooked in considerations of the evolution of cooperative sociality. To date, studies examining the costs and benefits of primary polygyny have focused primarily on the advantages of multiple queens during colony founding and early growth, but the impact of their presence extends to colony maturity and reproduction.

In this dissertation, I evaluate the ecological drivers and fitness consequences of non-kin queen cooperation, by comparing the reproduction of mature single-queen versus polygynous harvester ant (Pogonomyrmex californicus) colonies in the field. I captured and quantified the total number and biomass of reproductives across multiple mating seasons, comparing between populations that vary in the proportion of single queen versus polygynous colonies, to assess the fitness outcomes of queen cooperation. Colonies in a mainly polygynous site had lower reproductive investment than those in sites with predominantly single-queen colonies. The site dominated by polygyny had higher colony density and displayed evidence of resource limitation, pressures that may drive the evolution of queen cooperation.

I also used microsatellite markers to examine how polygynous queens share worker and reproductive production with nest-mate queens. The majority of queens fairly contribute to worker production and equally share reproductive output. However, there is a low frequency of queens that under-produce workers and over-produce reproductive offspring. This suggests that cheating by reproducing queens is possible, but uncommon. Competitive pressure from neighboring colonies could reduce the success of colonies that contain cheaters and maintain a low frequency of this phenotype in the population.
ContributorsHaney, Brian R (Author) / Fewell, Jennifer H (Thesis advisor) / Cole, Blaine J. (Committee member) / Gadau, Juergen (Committee member) / Hoelldobler, Bert (Committee member) / Rutowski, Ron L (Committee member) / Arizona State University (Publisher)
Created2017
158849-Thumbnail Image.png
Description
Next-generation sequencing is a powerful tool for detecting genetic variation. How-ever, it is also error-prone, with error rates that are much larger than mutation rates.
This can make mutation detection difficult; and while increasing sequencing depth
can often help, sequence-specific errors and other non-random biases cannot be de-
tected by increased depth. The

Next-generation sequencing is a powerful tool for detecting genetic variation. How-ever, it is also error-prone, with error rates that are much larger than mutation rates.
This can make mutation detection difficult; and while increasing sequencing depth
can often help, sequence-specific errors and other non-random biases cannot be de-
tected by increased depth. The problem of accurate genotyping is exacerbated when
there is not a reference genome or other auxiliary information available.
I explore several methods for sensitively detecting mutations in non-model or-
ganisms using an example Eucalyptus melliodora individual. I use the structure of
the tree to find bounds on its somatic mutation rate and evaluate several algorithms
for variant calling. I find that conventional methods are suitable if the genome of a
close relative can be adapted to the study organism. However, with structured data,
a likelihood framework that is aware of this structure is more accurate. I use the
techniques developed here to evaluate a reference-free variant calling algorithm.
I also use this data to evaluate a k-mer based base quality score recalibrator
(KBBQ), a tool I developed to recalibrate base quality scores attached to sequencing
data. Base quality scores can help detect errors in sequencing reads, but are often
inaccurate. The most popular method for correcting this issue requires a known
set of variant sites, which is unavailable in most cases. I simulate data and show
that errors in this set of variant sites can cause calibration errors. I then show that
KBBQ accurately recalibrates base quality scores while requiring no reference or other
information and performs as well as other methods.
Finally, I use the Eucalyptus data to investigate the impact of quality score calibra-
tion on the quality of output variant calls and show that improved base quality score
calibration increases the sensitivity and reduces the false positive rate of a variant
calling algorithm.
ContributorsOrr, Adam James (Author) / Cartwright, Reed (Thesis advisor) / Wilson, Melissa (Committee member) / Kusumi, Kenro (Committee member) / Taylor, Jesse (Committee member) / Pfeifer, Susanne (Committee member) / Arizona State University (Publisher)
Created2020