Matching Items (4)
Filtering by

Clear all filters

148192-Thumbnail Image.png
Description

Lyme disease is a common tick-borne illness caused by the Gram-negative bacterium Borrelia burgdorferi. An outer membrane protein of Borrelia burgdorferi, P66, has been suggested as a possible target for Lyme disease treatments. However, a lack of structural information available for P66 has hindered attempts to design medications to target

Lyme disease is a common tick-borne illness caused by the Gram-negative bacterium Borrelia burgdorferi. An outer membrane protein of Borrelia burgdorferi, P66, has been suggested as a possible target for Lyme disease treatments. However, a lack of structural information available for P66 has hindered attempts to design medications to target the protein. Therefore, this study attempted to find methods for expressing and purifying P66 in quantities that can be used for structural studies. It was found that by using the PelB signal sequence, His-tagged P66 could be directed to the outer membrane of Escherichia coli, as confirmed by an anti-His Western blot. Further attempts to optimize P66 expression in the outer membrane were made, pending verification via Western blotting. The ability to direct P66 to the outer membrane using the PelB signal sequence is a promising first step in determining the overall structure of P66, but further work is needed before P66 is ready for large-scale purification for structural studies.

ContributorsRamirez, Christopher Nicholas (Author) / Fromme, Petra (Thesis director) / Hansen, Debra (Committee member) / Department of Physics (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
131608-Thumbnail Image.png
Description
This research evaluates the capabilities of typical radiological measures and dual-energy systems to differentiate common kidney stones materials: uric acid, oxalates, phosphates, struvite, and cystine. Two different X-ray spectra (80 kV and 120 kV) were applied and the dual-energy ratio of individual kidney stones was used to figure out the

This research evaluates the capabilities of typical radiological measures and dual-energy systems to differentiate common kidney stones materials: uric acid, oxalates, phosphates, struvite, and cystine. Two different X-ray spectra (80 kV and 120 kV) were applied and the dual-energy ratio of individual kidney stones was used to figure out the discriminability of different materials. A CT cross-section with a prospective kidney stone was analyzed to see the capabilities of such a technique. Typical radiological measures suggested that phosphates and oxalate stones can be distinguished from uric acid stones while dual-energy seemed to prove similar effectiveness.
ContributorsDelafuente, Nicholas William (Author) / Rez, Peter (Thesis director) / Alarcon, Ricardo (Committee member) / Department of Physics (Contributor) / Economics Program in CLAS (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131674-Thumbnail Image.png
Description
Although extracellular throughout their lifecycle, trypanosomes are able to persist despite strong host immune responses through a process known as antigenic variation involving a large, highly diverse family of surface glycopro- tein (VSG) genes, only one of which is expressed at a time. Previous studies have used mathematical models to

Although extracellular throughout their lifecycle, trypanosomes are able to persist despite strong host immune responses through a process known as antigenic variation involving a large, highly diverse family of surface glycopro- tein (VSG) genes, only one of which is expressed at a time. Previous studies have used mathematical models to investigate the relationship between VSG switching and the dynamics of trypanosome infections, but none have explored the role of multiple VSG expression sites or the contribution of mosaic gene conversion events involving VSG pseudogenes.
ContributorsKoury, Michael Andrew (Author) / Taylor, Jesse (Thesis director) / Gumel, Abba (Committee member) / Department of Physics (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
133795-Thumbnail Image.png
Description
Since its discovery in 1524, many people have characterized the vermiform appendix. Charles Darwin considered the human appendix to be a vestige and a useless structure. Others at the time opposed this hypothesis. However, Darwin's hypothesis became prevalent one until recently when there became a renewed interest in the appendix

Since its discovery in 1524, many people have characterized the vermiform appendix. Charles Darwin considered the human appendix to be a vestige and a useless structure. Others at the time opposed this hypothesis. However, Darwin's hypothesis became prevalent one until recently when there became a renewed interest in the appendix because of advancements in microscopes, knowledge of the immune system, and phylogenetics. In this review, I will argue that the vermiform appendix, although still not completely understood, has important functions. First, I will give the anatomy of the appendix. I will discuss the comparative anatomy between different animals and also primates. I will address the effects of appendicitis and appendectomy. I will give background on vestigial structures and will discuss if the appendix is a vestige. Following, I will review the evolution of the appendix. Finally, I will argue that the function of the appendix is as an immune organ, including discussion of gut-associated lymphoid tissue (GALT), development of lymphoid follicles in GALT and their comparison within different organs, Immunoglobulin A (IgA) function in the gut, biofilms as evidence that the appendix is a safe-house for beneficial bacteria, re-inoculation of the bowel, and protection against recurring infection. I will conclude with future studies that should be conducted to further our understanding of the vermiform appendix.
ContributorsPrestwich, Shelby Elizabeth (Author) / Cartwright, Reed (Thesis director) / Lynch, John (Committee member) / Furstenau, Tara (Committee member) / School of Geographical Sciences and Urban Planning (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05