Matching Items (11)
Filtering by

Clear all filters

Description
As a biology major, many of my classes have included studying the fundamentals of genetics or investigating the way genetics influence heritability of certain diseases. When I began taking upper-division psychology courses, the genetic factors of psychological disorders became an important part of the material. I was exposed to a

As a biology major, many of my classes have included studying the fundamentals of genetics or investigating the way genetics influence heritability of certain diseases. When I began taking upper-division psychology courses, the genetic factors of psychological disorders became an important part of the material. I was exposed to a new idea: that genes were equally important in studying somatic diseases as they were to psychological disorders. As important as genetics are to psychology, they are not part of the required courses for the major; I found many of my peers in psychology courses did not have a grasp on genetic fundamentals in the same way biology majors did. This was a disconnect that I also found in my own life outside the classroom. Growing up, my mother consistently reminded me to limit my carbs and watch my sugars. Diabetes was very prevalent in my family and I was also at risk. I was repeatedly reminded of my own genes and the risk I faced in having this biological disorder. However, my friend whose father was an alcoholic did not warn her in the same way. While she did know of her father's history, she was not warned of the potential for her to become an alcoholic. While my behavior was altered due to my mother's warning and my own knowledge of the genetic risk of diabetes, I wondered if other people at genetic risk of psychological disorders also altered their behavior. Through my thesis, I hope to answer if students have the same perceived genetic knowledge of psychological diseases as they do for biological ones. In my experience, it is not as well known that psychological disorders have genetic factors. For example, alcohol is commonly used by college students. Alcohol use disorder is present in 16.2% of college aged students and "40-60% of the variance of risk explained by genetic influences." (DSM V, 2013) Compare this to diabetes that has "several common genetic variants that account for about 10% of the total genetic effects," but is much more openly discussed even though it is less genetically linked. (McVay, 2015)This stems from the stigma/taboo surrounding many psychological disorders. If students do know that psychological disorder are genetically influenced, I expect their knowledge to be skewed or inaccurate. As part of a survey, I hope to see how strong they believe the genetic risk of certain diseases are as well as where they gained this knowledge. I hypothesize that only students with a background in psychology will be able to correctly assign the genetic risk of the four presented diseases. Completing this thesis will require in-depth study of the genetic factors, an understanding of the way each disease is perceived and understood by the general population, and a statistical analysis of the survey responses. If the survey data turns out as I expect where students do not have a strong grasp of diseases that could potentially influence their own health, I hope to find a way to educate students on biological and psychological diseases, their genetic risk, and how to speak openly about them.
ContributorsParasher, Nisha (Author) / Amdam, Gro (Thesis director) / Toft, Carolyn Cavaugh (Committee member) / Ostwald, Madeleine (Committee member) / Department of Psychology (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134043-Thumbnail Image.png
Description
Dire wolves have recently risen to fame as a result of the popular television program Game of Thrones, and thus many viewers know dire wolves as the sigil and loyal companions of the Stark house. Far fewer recognize dire wolves by their scientific name, Canis dirus, or understand the population

Dire wolves have recently risen to fame as a result of the popular television program Game of Thrones, and thus many viewers know dire wolves as the sigil and loyal companions of the Stark house. Far fewer recognize dire wolves by their scientific name, Canis dirus, or understand the population history of this ‘fearsome wolf’ species that roamed the Americas until the megafaunal mass extinction event of the Late Pleistocene. Although numerous studies have examined the species using morphological and geographical methods, thus far their results have been either inconclusive or contradictory. Remaining questions include the relationships dire wolves share with other members of the Canis genus and the internal structure of their populations. Advancements in ancient DNA recovery methods may make it possible to study dire wolf specimens at the molecular level for the first time and may therefore prove useful in clarifying the answers to these questions. Eighteen dire wolf specimens were collected from across the United States and subjected to ancient DNA extraction, library preparation, amplification and purification, bait preparation and capture, and next-generation sequencing. There was an average of 76.9 unique reads and 5.73% coverage when mapped to the Canis familiaris reference genome in ultraconserved regions of the mitochondrial genome. The results indicate that endogenous ancient DNA was not successfully recovered and perhaps ancient DNA recovery methods have not advanced to the point of retrieving informative amounts of DNA from particularly old, thermally degraded specimens. Nevertheless, the ever-changing nature of ancient DNA research makes it vital to continually test the limitations of the field and suggests that ancient DNA recovery methods will prove useful in illuminating dire wolf population history at some point in the future.
ContributorsSkerry, Katherine Marie (Author) / Stone, Anne (Thesis director) / Amdam, Gro (Committee member) / Larson, Greger (Committee member) / School of Human Evolution and Social Change (Contributor) / School of Nutrition and Health Promotion (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134156-Thumbnail Image.png
Description
Vitellogenin (vg) is a precursor protein of egg yolk in honeybees, but it is also known to have immunological functions. The purpose of this experiment was to determine the effect of vg on the viral load of deformed wing virus (DWV) in worker honey bees (Apis mellifera). I hypothesized that

Vitellogenin (vg) is a precursor protein of egg yolk in honeybees, but it is also known to have immunological functions. The purpose of this experiment was to determine the effect of vg on the viral load of deformed wing virus (DWV) in worker honey bees (Apis mellifera). I hypothesized that a reduction in vg expression would lead to an increase in the viral load. I collected 180 worker bees and split them into four groups: half the bees were subjected to a vg gene knockdown by injections of double stranded vg RNA, and the rest were injected with green fluorescent protein (gfp) double stranded RNA. Half of each group was thereafter injected with DWV, and half given a sham injection. The rate of mortality in all four groups was higher than expected, leaving only 17 bees total. I dissected these bees' fat bodies and extracted their RNA to test for vg and DWV. PCR results showed that, out of the small group of remaining bees, the levels of vg were not statistically different. Furthermore, both groups of virus-injected bees showed similar viral loads. Because of the high mortality rate bees and the lack of differing levels of vg transcript between experimental and control groups, I could not draw conclusions from these results. The high mortality could be caused by several factors: temperature-induced stress, repeated stress from the two injections, and stress from viral infection. In addition, it is possible that the vg dsRNA batch I used was faulty. This thesis exemplifies that information cannot safely be extracted when loss of sampling units result in a small datasets that do not represent the original sampling population.
ContributorsCrable, Emma Lewis (Author) / Amdam, Gro (Thesis director) / Wang, Ying (Committee member) / Dahan, Romain (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
161580-Thumbnail Image.png
Description
The splicing of precursor messenger RNAs (pre-mRNAs) plays an essential role in dictating the mature mRNA profiles of eukaryotic cells. Mis-regulation of splicing, due to mutations in pre-mRNAs or in components of the splicing machinery, is associated with many diseases. Therefore, knowledge of pre-mRNA splicing mechanisms is required to understand

The splicing of precursor messenger RNAs (pre-mRNAs) plays an essential role in dictating the mature mRNA profiles of eukaryotic cells. Mis-regulation of splicing, due to mutations in pre-mRNAs or in components of the splicing machinery, is associated with many diseases. Therefore, knowledge of pre-mRNA splicing mechanisms is required to understand gene expression regulation during states of homeostasis and disease, and for the development of therapeutic interventions.Splicing is catalyzed by the spliceosome, a dynamic and protein-rich ribozyme composed of five small nuclear ribonucleoproteins (snRNPs) and ~170 auxiliary factors. Early interactions that occur in prespliceosomal complexes formed by the 5′- and 3′-splice-site bound U1 and U2 snRNPs are responsible for committing introns for removal. However, the mechanisms underlying these early interactions remain to be fully characterized for understanding the influence of alternative splicing factors and the impact of recurrent disease-associated mutations in prespliceosomal proteins. The goal of my dissertation research was to delineate the role of the U1 small nuclear RNA (snRNA) during prespliceosome assembly. By applying a cellular minigene reporter assay and a variety of in vitro techniques including cell-free protein expression, UV-crosslinking, electrophoretic mobility shift assays, surface plasmon resonance, and RNA affinity purification, my work establishes critical roles for the U1 snRNA stem-loops 3 (SL3) and 4 (SL4) in formation of intron definition interactions during prespliceosome assembly. Previously, the SL4 of the U1 snRNA was shown to form a molecular bridge across introns by contacting the U2-specific splicing factor 3A1 (SF3A1). I identified the Ubiquitin-like domain of SF3A1 as a non-canonical RNA binding domain responsible for U1-SL4 binding. I also determined a role for the SL3 region of the U1 snRNA in splicing and characterized the spliceosomal RNA helicase UAP56 as an SL3 interacting protein. By knocking-down the SL3- and SL4-interacting proteins, I confirmed that U1 splicing activity in vivo relies on UAP56 and SF3A1 and that their functions are interdependent. These findings, in addition to the observations made using in vitro splicing assays, support a model whereby UAP56, through its interaction with U1-SL3, enhances the cross-intron interaction between U1-SL4 and SF3A1 to promote prespliceosome formation.
ContributorsMartelly, William (Author) / Sharma, Shalini (Thesis advisor) / Mangone, Marco (Thesis advisor) / Gustin, Kurt (Committee member) / Chen, Julian (Committee member) / Arizona State University (Publisher)
Created2021
168531-Thumbnail Image.png
Description
Understanding why animals form social groups is a fundamental aim of sociobiology. To date, the field has been dominated by studies of kin groups, which have emphasized indirect fitness benefits as key drivers of grouping among relatives. Nevertheless, many animal groups are comprised of unrelated individuals. These cases provide unique

Understanding why animals form social groups is a fundamental aim of sociobiology. To date, the field has been dominated by studies of kin groups, which have emphasized indirect fitness benefits as key drivers of grouping among relatives. Nevertheless, many animal groups are comprised of unrelated individuals. These cases provide unique opportunities to illuminate drivers of social evolution beyond indirect fitness, especially ecological factors. This dissertation combines behavioral, physiological, and ecological approaches to explore the conditions that favor group formation among non-kin, using as a model the facultatively social carpenter bee, Xylocopa sonorina. Using behavioral and genetic techniques, I found that nestmates in this species are often unrelated, and that non-kin groups form following extensive inter-nest migration.Group living may arise as a strategy to mitigate constraints on available breeding space. To test the hypothesis that nest construction is prohibitively costly for carpenter bees, I measured metabolic rates of excavating bees and used imaging techniques to quantify nest volumes. From these measurements, I found that nest construction is highly energetically costly, and that bees who inherit nests through social queuing experience substantial energetic savings. These costs are exacerbated by limitations on the reuse of existing nests. Using repeated CT scans of nesting logs, I examined changes in nest architecture over time and found that repeatedly inherited tunnels become indefensible to intruders, and are subsequently abandoned. Together, these factors underlie intense competition over available breeding space. The imaging analysis of nesting logs additionally revealed strong seasonal effects on social strategy, with social nesting dominating during winter. To test the hypothesis that winter social nesting arises from intrinsic physiological advantages of grouping, I experimentally manipulated social strategy in overwintering bees. I found that social bees conserve heat and body mass better than solitary bees, suggesting fitness benefits to grouping in cold, resource-scarce conditions. Together, these results suggest that grouping in X. sonorina arises from dynamic strategies to maximize direct fitness in response to harsh and/or competitive conditions. These studies provide empirical insights into the ecological conditions that favor non-kin grouping, and emphasize the importance of ecology in shaping sociality at its evolutionary origins.
ContributorsOstwald, Madeleine (Author) / Fewell, Jennifer H (Thesis advisor) / Amdam, Gro (Committee member) / Harrison, Jon (Committee member) / Pratt, Stephen (Committee member) / Kapheim, Karen (Committee member) / Arizona State University (Publisher)
Created2022
168823-Thumbnail Image.png
Description
Glioblastoma (GBM), the most common and aggressive primary brain tumor affecting adults, is characterized by an aberrant yet druggable epigenetic landscape. The Histone Deacetylases (HDACs), a major family of epigenetic regulators, favor transcriptional repression by mediating chromatin compaction and are frequently overexpressed in human cancers, including GBM. Hence, over the

Glioblastoma (GBM), the most common and aggressive primary brain tumor affecting adults, is characterized by an aberrant yet druggable epigenetic landscape. The Histone Deacetylases (HDACs), a major family of epigenetic regulators, favor transcriptional repression by mediating chromatin compaction and are frequently overexpressed in human cancers, including GBM. Hence, over the last decade there has been considerable interest in using HDAC inhibitors (HDACi) for the treatment of malignant primary brain tumors. However, to date most HDACi tested in clinical trials have failed to provide significant therapeutic benefit to patients with GBM. This is because current HDACi have poor or unknown pharmacokinetic profiles, lack selectivity towards the different HDAC isoforms, and have narrow therapeutic windows. Isoform selectivity for HDACi is important given that broad inhibition of all HDACs results in widespread toxicity across different organs. Moreover, the functional roles of individual HDAC isoforms in GBM are still not well understood. Here, I demonstrate that HDAC1 expression increases with brain tumor grade and is correlated with decreased survival in GBM. I find that HDAC1 is the essential HDAC isoform in glioma stem cells and its loss is not compensated for by its paralogue HDAC2 or other members of the HDAC family. Loss of HDAC1 alone has profound effects on the glioma stem cell phenotype in a p53-dependent manner and leads to significant suppression of tumor growth in vivo. While no HDAC isoform-selective inhibitors are currently available, the second-generation HDACi quisinostat harbors high specificity for HDAC1. I show that quisinostat exhibits potent growth inhibition in multiple patient-derived glioma stem cells. Using a pharmacokinetics- and pharmacodynamics-driven approach, I demonstrate that quisinostat is a brain-penetrant molecule that reduces tumor burden in flank and orthotopic models of GBM and significantly extends survival both alone and in combination with radiotherapy. The work presented in this thesis thereby unveils the non-redundant functions of HDAC1 in therapy- resistant glioma stem cells and identifies a brain-penetrant HDACi with higher selectivity towards HDAC1 as a potent radiosensitizer in preclinical models of GBM. Together, these results provide a rationale for developing quisinostat as a potential adjuvant therapy for the treatment of GBM.
ContributorsLo Cascio, Costanza (Author) / LaBaer, Joshua (Thesis advisor) / Mehta, Shwetal (Committee member) / Mirzadeh, Zaman (Committee member) / Mangone, Marco (Committee member) / Paek, Andrew (Committee member) / Arizona State University (Publisher)
Created2022
171500-Thumbnail Image.png
Description
Advances in sequencing technology have generated an enormous amount of data over the past decade. Equally advanced computational methods are needed to conduct comparative and functional genomic studies on these datasets, in particular tools that appropriately interpret indels within an evolutionary framework. The evolutionary history of indels is complex and

Advances in sequencing technology have generated an enormous amount of data over the past decade. Equally advanced computational methods are needed to conduct comparative and functional genomic studies on these datasets, in particular tools that appropriately interpret indels within an evolutionary framework. The evolutionary history of indels is complex and often involves repetitive genomic regions, which makes identification, alignment, and annotation difficult. While previous studies have found that indel lengths in both deoxyribonucleic acid and proteins obey a power law, probabilistic models for indel evolution have rarely been explored due to their computational complexity. In my research, I first explore an application of an expectation-maximization algorithm for maximum-likelihood training of a codon substitution model. I demonstrate the training accuracy of the expectation-maximization on my substitution model. Then I apply this algorithm on a published 90 pairwise species dataset and find a negative correlation between the branch length and non-synonymous selection coefficient. Second, I develop a post-alignment fixation method to profile each indel event into three different phases according to its codon position. Because current codon-aware models can only identify the indels by placing the gaps between codons and lead to the misalignment of the sequences. I find that the mouse-rat species pair is under purifying selection by looking at the proportion difference of the indel phases. I also demonstrate the power of my sliding-window method by comparing the post-aligned and original gap positions. Third, I create an indel-phase moore machine including the indel rates of three phases, length distributions, and codon substitution models. Then I design a gillespie simulation that is capable of generating true sequence alignments. Next I develop an importance sampling method within the expectation-maximization algorithm that can successfully train the indel-phase model and infer accurate parameter estimates from alignments. Finally, I extend the indel phase analysis to the 90 pairwise species dataset across three alignment methods, including Mafft+sw method developed in chapter 3, coati-sampling methods applied in chapter 4, and coati-max method. Also I explore a non-linear relationship between the dN/dS and Zn/(Zn+Zs) ratio across 90 species pairs.
ContributorsZhu, Ziqi (Author) / Cartwright, Reed A (Thesis advisor) / Taylor, Jay (Committee member) / Wideman, Jeremy (Committee member) / Mangone, Marco (Committee member) / Arizona State University (Publisher)
Created2022
190882-Thumbnail Image.png
Description
Speciation, or the process by which one population diverges into multiple populations that can no longer interbreed with each other, has brought about the incredible diversity of life. Mechanisms underlying this process can be more visible in the early stages of the speciation process. The mechanisms that restrict gene flow

Speciation, or the process by which one population diverges into multiple populations that can no longer interbreed with each other, has brought about the incredible diversity of life. Mechanisms underlying this process can be more visible in the early stages of the speciation process. The mechanisms that restrict gene flow in highly mobile species with no absolute barriers to dispersal, especially marine species, are understudied. Similarly, human impacts are reshaping ecosystems globally, and we are only just beginning to understand the implications of these rapid changes on evolutionary processes. In this dissertation, I investigate patterns of speciation and evolution in two avian clades: a genus of widespread tropical seabirds (boobies, genus Sula), and two congeneric passerine species in an urban environment (cardinals, genus Cardinalis). First, I explore the prevalence of gene flow across land barriers within species and between sympatric species in boobies. I found widespread evidence of gene flow over all land barriers and between 3 species pairs. Next, I compared the effects of urbanization on the spatial distributions of two cardinal species, pyrrhuloxia (Cardinalis sinuatus) and northern cardinals (Cardinalis cardinalis), in Tucson, Arizona. I found that urbanization has different effects on the spatial distributions of two closely related species that share a similar environmental niche, and I identified environmental variables that might be driving this difference. Then I tested for effects of urbanization on color and size traits of these two cardinal species. In both of these species, urbanization has altered traits involved in signaling, heat tolerance, foraging, and maneuverability. Finally, I tested for evidence of selection on the urban populations of both cardinal species and found evidence of both parallel selection and introgression between the species, as well as selection on different genes in each species. The functions of the genes that experienced positive selection suggest that light at night, energetics, and air pollution may have acted as strong selective pressures on these species in the past. Overall, my dissertation emphasizes the role of introgression in the speciation process, identifies environmental stressors faced by wildlife in urban environments, and characterizes their evolutionary responses to those stressors.
ContributorsJackson, Daniel Nelson (Author) / McGraw, Kevin J (Thesis advisor) / Amdam, Gro (Committee member) / Sweazea, Karen (Committee member) / Taylor, Scott (Committee member) / Arizona State University (Publisher)
Created2023
171957-Thumbnail Image.png
Description
Cocaine induces long-lasting changes in mesolimbic ‘reward’ circuits of the brain after cessation of use. These lingering changes include the neuronal plasticity that is thought to underlie the chronic relapsing nature of substance use disorders. Genes involved in neuronal plasticity also encode circular RNAs (circRNAs), which are stable, non-coding RNAs

Cocaine induces long-lasting changes in mesolimbic ‘reward’ circuits of the brain after cessation of use. These lingering changes include the neuronal plasticity that is thought to underlie the chronic relapsing nature of substance use disorders. Genes involved in neuronal plasticity also encode circular RNAs (circRNAs), which are stable, non-coding RNAs formed through the back-splicing of pre-mRNA. The Homer1 gene family, which encodes proteins associated with cocaine-induced plasticity, also encodes circHomer1. Based on preliminary evidence from shows cocaine-regulated changes in the ratio of circHomer1 and Homer1b mRNA in the nucleus accumbens (NAc), this study examined the relationship between circHomer1 and incentive motivation for cocaine by using different lengths of abstinence to vary the degree of motivation. Male and female rats were trained to self-administer cocaine (0.75 mg/kg/infusion, IV) or received a yoked saline infusion. Rats proceeded on an increasingly more difficult variable ratio schedule of lever pressing until they reached a variable ratio 5 schedule, which requires an average of 5 lever presses, and light and tone cues were delivered with the drug infusions. Rats were then tested for cocaine-seeking behavior in response to cue presentations without drug delivery either 1 or 21 days after their last self-administration session. They were sacrificed immediately after and circHomer1 and Homer1b expression was then measured from homogenate and synaptosomal fractions of NAc shell using RT-qPCR. Lever pressing during the cue reactivity test increased from 1 to 21 days of abstinence as expected. Results showed no group differences in synaptic circHomer1 expression, however, total circHomer1 expression was downregulated in 21d rats compared to controls. Lack of change in synaptic circHomer1 was likely due to trends toward different temporal changes in males versus females. Total Homer1b expression was higher in females, although there was no effect of cocaine abstinence. Further research investigating the time course of circHomer1 and Homer1b expression is warranted based on the inverse relationship between total circHomer1and cocaine-seeking behavior observed in this study.
ContributorsJohnson, Michael Christian (Author) / Neisewander, Janet L (Thesis advisor) / Perrone-Bizzozero, Nora (Thesis advisor) / Mangone, Marco (Committee member) / Arizona State University (Publisher)
Created2022
Description
The partitioning of photosynthates between their sites of production (source) and their sites of utilization (sink) is a major determinant of crop yield and the potential of regulating this translocation promises substantial opportunities for yield increases. Ubiquitous overexpression of the plant type I proton pyrophosphatase (H+-PPase) in crops improves several

The partitioning of photosynthates between their sites of production (source) and their sites of utilization (sink) is a major determinant of crop yield and the potential of regulating this translocation promises substantial opportunities for yield increases. Ubiquitous overexpression of the plant type I proton pyrophosphatase (H+-PPase) in crops improves several valuable traits including salt tolerance and drought resistance, nutrient and water use efficiencies, and increased root biomass and yield. Originally, type I H+-PPases were described as pyrophosphate (PPi)-dependent proton pumps localized exclusively in vacuoles of mesophyll and meristematic tissues. It has been proposed that in the meristematic tissues, the role of this enzyme would be hydrolyzing PPi originated in biosynthetic reactions and favoring sink strength. Interestingly, this enzyme has been also localized at the plasma membrane of companion cells in the phloem which load and transport photosynthates from source leaves to sinks. Of note, the plasma membrane-localized H+-PPase could only function as a PPi-synthase in these cells due to the steep proton gradient between the apoplast and cytosol. The generated PPi would favor active sucrose loading through the sucrose/proton symporter in the phloem by promoting sucrose hydrolysis through the Sucrose Synthase pathway and providing the ATP required to maintain the proton gradient. To better understand these two different roles of type I H+-PPases, a series of Arabidopsis thaliana transgenic plants were generated. By expressing soluble pyrophosphatases in companion cells of Col-0 ecotype and H+-PPase mutants, impaired photosynthates partitioning was observed, suggesting phloem-localized H+-PPase could generate the PPi required for sucrose loading. Col-0 plants expressed with either phloem- or meristem-specific AVP1 overexpression cassette and the cross between the two tissue specific lines (Cross) were generated. The results showed that the phloem-specific AVP1-overexpressing plants had increased root hair elongation under limited nutrient conditions and both phloem- and meristem-overexpression of AVP1 contributed to improved rhizosphere acidification and drought resistance. It was concluded that H+-PPases localized in both sink and source tissues regulate plant growth and performance under stress through its versatile enzymatic functions (PPi hydrolase and synthase).
ContributorsLi, Lin (Author) / Park, Yujin (Thesis advisor) / Mangone, Marco (Committee member) / Roberson, Robert (Committee member) / Vermaas, Willem (Committee member) / Arizona State University (Publisher)
Created2022