Matching Items (11)
Filtering by

Clear all filters

152641-Thumbnail Image.png
Description
The advent of new high throughput technology allows for increasingly detailed characterization of the immune system in healthy, disease, and age states. The immune system is composed of two main branches: the innate and adaptive immune system, though the border between these two states is appearing less distinct. The adaptive

The advent of new high throughput technology allows for increasingly detailed characterization of the immune system in healthy, disease, and age states. The immune system is composed of two main branches: the innate and adaptive immune system, though the border between these two states is appearing less distinct. The adaptive immune system is further split into two main categories: humoral and cellular immunity. The humoral immune response produces antibodies against specific targets, and these antibodies can be used to learn about disease and normal states. In this document, I use antibodies to characterize the immune system in two ways: 1. I determine the Antibody Status (AbStat) from the data collected from applying sera to an array of non-natural sequence peptides, and demonstrate that this AbStat measure can distinguish between disease, normal, and aged samples as well as produce a single AbStat number for each sample; 2. I search for antigens for use in a cancer vaccine, and this search results in several candidates as well as a new hypothesis. Antibodies provide us with a powerful tool for characterizing the immune system, and this natural tool combined with emerging technologies allows us to learn more about healthy and disease states.
ContributorsWhittemore, Kurt (Author) / Sykes, Kathryn (Thesis advisor) / Johnston, Stephen A. (Committee member) / Jacobs, Bertram (Committee member) / Stafford, Phillip (Committee member) / Stout, Valerie (Committee member) / Arizona State University (Publisher)
Created2014
152822-Thumbnail Image.png
Description
This study aims to unearth monological and monocultural discourses buried under the power of the dominant biomedical model governing the HIV/AIDS debate. The study responds to an apparent consensus, rooted in Western biomedicine and its "standardizations of knowledge," in the production of the current HIV/AIDS discourse, especially in Sub-Saharan Africa.

This study aims to unearth monological and monocultural discourses buried under the power of the dominant biomedical model governing the HIV/AIDS debate. The study responds to an apparent consensus, rooted in Western biomedicine and its "standardizations of knowledge," in the production of the current HIV/AIDS discourse, especially in Sub-Saharan Africa. As a result, biomedicine has become the dominant actor (in) writing and rewriting discourse for the masses while marginalizing other forms of medical knowledge. Specifically, in its development, the Western biomedical model has arguably isolated the disease from its human host and the social experiences that facilitate the disease's transmission, placing it in the realm of laboratories and scientific experts and giving full ownership to Western medical discourse. Coupled with Western assumptions about African culture that reproduce a one-sided discourse informing the social construction of HIV/AIDS in Africa, this Western monopoly thus constrained the extent and efficacy of international prevention efforts. In this context, the goal for this study is not to demonize the West and biomedicine in general. Rather, this study seeks an alternative and less monolithic understanding currently absent in scientific discourses of HIV/AIDS that frequently elevates Western biomedicine over indigenous medicine; the Western expert over the local. The study takes into account the local voices of Sub-Saharan Africa and how the system has affected them, this study utilizes a Foucauldian approach to analyze discourse as a way to explore how certain ways of knowledge are formed in relation to power. This study also examines how certain knowlege is maintaned and reinforced within specific discourses.
ContributorsAbdalla, Mohamed (Author) / Jacobs, Bertram (Thesis advisor) / Robert, Jason (Committee member) / Klimek, Barbara (Committee member) / Arizona State University (Publisher)
Created2014
157475-Thumbnail Image.png
Description
Access to testing for the human immunodeficiency virus (HIV), as well as other care services related to HIV/AIDS, have greatly improved in Tanzania over the last decade. Despite the country’s efforts to increase the number of individuals who get tested for HIV annually, it is estimated that only 52.2-70.0% of

Access to testing for the human immunodeficiency virus (HIV), as well as other care services related to HIV/AIDS, have greatly improved in Tanzania over the last decade. Despite the country’s efforts to increase the number of individuals who get tested for HIV annually, it is estimated that only 52.2-70.0% of people living with HIV (PLWH) knew their HIV positive status at the end of 2017. In addition, research in Tanzania has shown that HIV-related stigma and discrimination are widespread and contribute to low uptake of HIV testing and non-adherence to antiretroviral treatment (ART). In order to achieve the goals set forth by the Government of Tanzania and the Joint United Nations Programme on HIV/AIDS (UNAIDS), as well as move towards an AIDS-free generation, a deeper understanding of the stigma-related barriers to seeking an HIV test is necessary. This research aims to better understand the relationship between HIV-related stigma and attitudes towards HIV testing among community members in Northern Tanzania. In addition, it looked at the specific barriers that contribute to low uptake of HIV testing, as well as the impact of social networks on an individual’s motivation and willingness to get tested for HIV. In this research, community members in Meru District (N = 108, male = 69.4%, female = 28.7%) were surveyed using various validated instruments that covered a range of topics, including knowledge of HIV/AIDS, testing attitudes, and perceived risk of HIV infection. The mean overall score for correct answers on the knowledge measure was 69.8% (SD = 16.4). There were no significant group differences between individuals who had ever tested and individuals who had not tested in relation to HIV/AIDS knowledge or HIV testing attitudes. The factors that were significantly associated with getting an HIV test were knowing someone who had previously tested (p = 0.003), as well as openly discussing HIV testing within one’s social group (p = 0.017). Participants also provided qualitative responses for barriers to receiving an HIV test, motivations for getting tested, and suggested interventions for improving HIV testing uptake. The goal of this research is to develop recommendations for interventions that are better informed by attitudes and motivations for testing.
ContributorsAllen, Megan (Author) / Jacobs, Bertram (Thesis advisor) / Neuberg, Steven (Committee member) / Ellison, Karin (Committee member) / Arizona State University (Publisher)
Created2019
136641-Thumbnail Image.png
Description
This paper explores the relationship between wildfire management and the consideration of ecological and environmental concerns in Arizona. To get a proper perspective on the current state of wildfire management in Arizona, information on two wildfire management programs, the Four Forests Restoration Initiative and FireScape, was researched and analyzed, as

This paper explores the relationship between wildfire management and the consideration of ecological and environmental concerns in Arizona. To get a proper perspective on the current state of wildfire management in Arizona, information on two wildfire management programs, the Four Forests Restoration Initiative and FireScape, was researched and analyzed, as well as contemporary fire policy, a history of wildfire in Arizona, and two recent fires in Sedona, AZ. The two fires in Sedona, the Brins Fire of 2006 and the Slide Fire of 2014, act as a focal point for this ecological management transition, as even within an 8-year period, we can see the different ways the two fires were managed and the transition to a greater ecological importance in management strategies. These all came together to give a full spectrum for the factors that have led to more ecologically-prominent wildfire management strategies in Arizona.
ContributorsGeorge-Sills, Dylan (Author) / Pyne, Stephen (Thesis director) / Hirt, Paul (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / School of Sustainability (Contributor)
Created2015-05
133138-Thumbnail Image.png
Description
The International Space Station (ISS) utilizes recycled water for consumption, cleaning and air humidity control. The Environmental Control and Life Support Systems (ECLSS) have been rigorously tested at the NASA Johnson Space Center. Despite the advanced engineering of the water recovery system, bacterial biofilms have been recovered from this potable

The International Space Station (ISS) utilizes recycled water for consumption, cleaning and air humidity control. The Environmental Control and Life Support Systems (ECLSS) have been rigorously tested at the NASA Johnson Space Center. Despite the advanced engineering of the water recovery system, bacterial biofilms have been recovered from this potable water source. Microbial contamination of potable water poses a potential threat to crew members onboard the ISS. Because astronauts have been found to have compromised immune systems, bacterial strains that would not typically be considered a danger must be carefully studied to better understand the mechanisms enabling their survival, including polymicrobial interactions. The need for a more thorough understanding of the effect of spaceflight environment on polymicrobial interactions and potential impact on crew health and vehicle integrity is heightened since 1) several potential pathogens have been isolated from the ISS potable water system, 2) spaceflight has been shown to induce unexpected alterations in microbial responses, and 3) emergent phenotypes are often observed when multiple bacterial species are co- cultured together, as compared to pure cultures of single species. In order to address these concerns, suitable growth media are required that will not only support the isolation of these microbes but also the ability to distinguish between them when grown as mixed cultures. In this study, selective and/or differential media were developed for bacterial isolates collected from the ISS potable water supply. In addition to facilitating discrimination between bacteria, the ideal media for each strain was intended to have a 100% recovery rate compared to traditional R2A media. Antibiotic and reagent susceptibility and resistance tests were conducted for the purpose of developing each individual medium. To study a wide range of targets, 12 antibiotics were selected from seven major classes, including penicillin, cephalosporins, fluoroquinolones, aminoglycosides, glycopeptides/lipoglycopeptides, macrolides/lincosamides/streptogramins, tetracyclines, in addition to seven unclassified antibiotics and three reagents. Once developed, medium efficacy was determined by means of growth curve experiments. The development of these media is a critical step for further research into the mechanisms utilized by these strains to survive the harsh conditions of the ISS water system. Furthermore, with an understanding of the complex nature of these polymicrobial communities, specific contamination targeting and control can be conducted to reduce the risk to crew members. Understanding these microbial species and their susceptibilities has potential application for future NASA human explorations, including those to Mars.
ContributorsKing, Olivia Grace (Author) / Nickerson, Cheryl (Thesis director) / Barrila, Jennifer (Committee member) / Ott, Mark (Committee member) / School of Sustainability (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
134904-Thumbnail Image.png
Description
The concept of “good” research is concrete in terms of technique, but complex in theory. As technology advances, the complexity of problems we must solve also grows. Research is facing an ethical dilemma—which projects, applied or basic, should be funded. Research is no longer an isolated sector in society, and

The concept of “good” research is concrete in terms of technique, but complex in theory. As technology advances, the complexity of problems we must solve also grows. Research is facing an ethical dilemma—which projects, applied or basic, should be funded. Research is no longer an isolated sector in society, and the decisions made inside of the laboratory are affecting the general public more directly than ever before. While there is no correct answer to what the future of research should be, it is clear that good research can no longer be only defined by the current classification system, which is rooted in antiquated, yet ingrained, social status distinctions.
Differences between basic and applied research were explored through a wet-lab case study. Vaccinia virus (VACV) infections are a prime model of the competition between a virus and its host. VACV contains a gene that is highly evasive of the host immune system, gene E3L. The protein encoded by E3L is E3, which contains two highly conserved regions, a C-terminus, and a N-terminus. While the C-terminus is well-understood, the mechanism by which the N-terminus grants IFN resistance was previously unknown. This project demonstrated that the N-terminus prevents the initiation of programmed necrosis through host-encoded cellular proteins RIP3 and DAI. These findings provide insight into the function of the N-terminus of E3, as well as the unique functions of induced programmed necrosis.
This project was an example of “basic” research. However, it highlights the interconnectivity of basic and applied research and the danger in isolating both projects and perspectives. It points to the difficult decisions that must be made in science, and the need for a better research classification system that considers what makes science “good” outside of antiquated social class ideologies that have shaped science since ancient Greece. While there are no easy answers to determine what makes research “good,” thinking critically about the types of research projects that will be pursued, and the effects that research has on both science and society, will raise awareness, initiate new conversations, and encourage more dialogue about science in the 21st century.
ContributorsSnyder, Caroline Jane (Author) / Jacobs, Bertram (Thesis director) / Hurlbut, Ben (Committee member) / Mateusz, Szczerba (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
154653-Thumbnail Image.png
Description
Salmonella enterica serovar Typhimurium (S. Typhimurium) is a Gram-negative enteric pathogen that causes self-limiting gastroenteritis in healthy individuals and can cause systemic infections in those who are immunocompromised. During its natural lifecycle, S. Typhimurium encounters a wide variety of stresses it must sense and respond to in a dynamic and

Salmonella enterica serovar Typhimurium (S. Typhimurium) is a Gram-negative enteric pathogen that causes self-limiting gastroenteritis in healthy individuals and can cause systemic infections in those who are immunocompromised. During its natural lifecycle, S. Typhimurium encounters a wide variety of stresses it must sense and respond to in a dynamic and coordinated fashion to induce resistance and ensure survival. Salmonella is subjected to a series of stresses that include temperature shifts, pH variability, detergent-like bile salts, oxidative environments and changes in fluid shear levels. Previously, our lab showed that cultures of S. Typhimurium grown under physiological low fluid shear (LFS) conditions similar to those encountered in the intestinal tract during infection uniquely regulates the virulence, gene expression and pathogenesis-related stress responses of this pathogen during log phase. Interestingly, the log phase Salmonella mechanosensitive responses to LFS were independent of the master stress response sigma factor, RpoS, departing from our conventional understanding of RpoS regulation. Since RpoS is a growth phase dependent regulator with increased stability in stationary phase, the current study investigated the role of RpoS in mediating pathogenesis-related stress responses in stationary phase S. Typhimurium grown under LFS and control conditions. Specifically, stationary phase responses to acid, thermal, bile and oxidative stress were assayed. To our knowledge the results from the current study demonstrate the first report that the mechanical force of LFS globally alters the S. Typhimurium χ3339 stationary phase stress response independently of RpoS to acid and bile stressors but dependently on RpoS to oxidative and thermal stress. This indicates that fluid shear-dependent differences in acid and bile stress responses are regulated by alternative pathway(s) in S. Typhimurium, were the oxidative and thermal stress responses are regulated through RpoS in LFS conditions. Results from this study further highlight how bacterial mechanosensation may be important in promoting niche recognition and adaptation in the mammalian host during infection, and may lead to characterization of previously unidentified pathogenesis strategies.
ContributorsCrenshaw, Keith (Author) / Nickerson, Cheryl A. (Thesis advisor) / Barrila, Jennifer (Thesis advisor) / Ott, C. (Committee member) / Stout, Valerie (Committee member) / Arizona State University (Publisher)
Created2016
154601-Thumbnail Image.png
Description
The emergence of invasive non-Typhoidal Salmonella (iNTS) infections belonging to sequence type (ST) 313 are associated with severe bacteremia and high mortality in sub-Saharan Africa. Distinct features of ST313 strains include resistance to multiple antibiotics, extensive genomic degradation, and atypical clinical diagnosis including bloodstream infections, respiratory symptoms, and fever. Herein,

The emergence of invasive non-Typhoidal Salmonella (iNTS) infections belonging to sequence type (ST) 313 are associated with severe bacteremia and high mortality in sub-Saharan Africa. Distinct features of ST313 strains include resistance to multiple antibiotics, extensive genomic degradation, and atypical clinical diagnosis including bloodstream infections, respiratory symptoms, and fever. Herein, I report the use of dynamic bioreactor technology to profile the impact of physiological fluid shear levels on the pathogenesis-related responses of ST313 pathovar, 5579. I show that culture of 5579 under these conditions induces profoundly different pathogenesis-related phenotypes than those normally observed when cultures are grown conventionally. Surprisingly, in response to physiological fluid shear, 5579 exhibited positive swimming motility, which was unexpected, since this strain was initially thought to be non-motile. Moreover, fluid shear altered the resistance of 5579 to acid, oxidative and bile stress, as well as its ability to colonize human colonic epithelial cells. This work leverages from and advances studies over the past 16 years in the Nickerson lab, which are at the forefront of bacterial mechanosensation and further demonstrates that bacterial pathogens are “hardwired” to respond to the force of fluid shear in ways that are not observed during conventional culture, and stresses the importance of mimicking the dynamic physical force microenvironment when studying host-pathogen interactions. The results from this study lay the foundation for future work to determine the underlying mechanisms operative in 5579 that are responsible for these phenotypic observations.
ContributorsCastro, Christian (Author) / Nickerson, Cheryl A. (Thesis advisor) / Ott, C. Mark (Committee member) / Roland, Kenneth (Committee member) / Barrila, Jennifer (Committee member) / Arizona State University (Publisher)
Created2016
149369-Thumbnail Image.png
Description
Protein folding is essential in all cells, and misfolded proteins cause many diseases. In the Gram-negative bacterium Escherichia coli, protein folding must be carefully controlled during envelope biogenesis to maintain an effective permeability barrier between the cell and its environment. This study explores the relationship between envelope biogenesis

Protein folding is essential in all cells, and misfolded proteins cause many diseases. In the Gram-negative bacterium Escherichia coli, protein folding must be carefully controlled during envelope biogenesis to maintain an effective permeability barrier between the cell and its environment. This study explores the relationship between envelope biogenesis and cell stress, and the return to homeostasis during envelope stress. A major player in envelope biogenesis and stress response is the periplasmic protease DegP. Work presented here explores the growth phenotypes of cells lacking degP, including temperature sensitivity and lowered cell viability. Intriguingly, these cells also accumulate novel cytosolic proteins in their envelope not present in wild-type. Association of novel proteins was found to be growth time- and temperature-dependent, and was reversible, suggesting a dynamic nature of the envelope stress response. Two-dimensional gel electrophoresis of envelopes followed by mass spectrometry identified numerous cytoplasmic proteins, including the elongation factor/chaperone TufA, illuminating a novel cytoplasmic response to envelope stress. A suppressor of temperature sensitivity was characterized which corrects the defect caused by the lack of degP. Through random Tn10 insertion analysis, aribitrarily-primed polymerase chain reaction and three-factor cross, the suppressor was identified as a novel duplication-truncation of rpoE, here called rpoE'. rpoE' serves to subtly increase RpoE levels in the cell, resulting in a slight elevation of the SigmaE stress response. It does so without significantly affecting steady-state levels of outer membrane proteins, but rather by increasing proteolysis in the envelope independently of DegP. A multicopy suppressor of temperature sensitivity in strains lacking degP and expressing mutant OmpC proteins, yfgC, was characterized. Bioinformatics suggests that YfgC is a metalloprotease, and mutation of conserved domains resulted in mislocalization of the protein. yfgC-null mutants displayed additive antibiotic sensitivity and growth defects when combined with null mutation in another periplasmic chaperone, surA, suggesting that the two act in separate pathways during envelope biogenesis. Overexpression of YfgC6his altered steady-state levels of mutant OmpC in the envelope, showing a direct relationship between it and a major constituent of the envelope. Curiously, purified YfgC6his showed an increased propensity for crosslinking in mutant, but not in a wild-type, OmpC background.
ContributorsLeiser, Owen Paul (Author) / Misra, Rajeev (Thesis advisor) / Jacobs, Bertram (Committee member) / Chang, Yung (Committee member) / Stout, Valerie (Committee member) / Arizona State University (Publisher)
Created2010
168533-Thumbnail Image.png
Description
Predatory bacteria are a guild of heterotrophs that feed directly on other living bacteria. They belong to several bacterial lineages that evolved this mode of life independently and occur in many microbiomes and environments. Current knowledge of predatory bacteria is based on culture studies and simple detection in natural systems.

Predatory bacteria are a guild of heterotrophs that feed directly on other living bacteria. They belong to several bacterial lineages that evolved this mode of life independently and occur in many microbiomes and environments. Current knowledge of predatory bacteria is based on culture studies and simple detection in natural systems. The ecological consequences of their activity, unlike those of other populational loss factors like viral infection or grazing by protists, are yet to be assessed. During large-scale cultivation of biological soil crusts intended for arid soil rehabilitation, episodes of catastrophic failure were observed in cyanobacterial growth that could be ascribed to the action of an unknown predatory bacterium using bioassays. This predatory bacterium was also present in natural biocrust communities, where it formed clearings (plaques) up to 9 cm in diameter that were visible to the naked eye. Enrichment cultivation and purification by cell-sorting were used to obtain co-cultures of the predator with its cyanobacterial prey, as well as to identify and characterize it genomically, physiologically and ultrastructurally. A Bacteroidetes bacterium, unrelated to any known isolate at the family level, it is endobiotic, non-motile, obligately predatory, displays a complex life cycle and very unusual ultrastructure. Extracellular propagules are small (0.8-1.0 µm) Gram-negative cocci with internal two-membrane-bound compartmentalization. These gain entry to the prey likely using a suite of hydrolytic enzymes, localizing to the cyanobacterial cytoplasm, where growth begins into non-compartmentalized pseudofilaments that undergo secretion of vesicles and simultaneous multiple division to yield new propagules. I formally describe it as Candidatus Cyanoraptor togatus, hereafter Cyanoraptor. Its prey range is restricted to biocrust-forming, filamentous, non-heterocystous, gliding, bundle-making cyanobacteria. Molecular meta-analyses showed its worldwide distribution in biocrusts. Biogeochemical analyses of Cyanoraptor plaques revealed that it causes a complete loss of primary productivity, and significant decreases in other biocrusts properties such as water-retention and dust-trapping capacity. Extensive field surveys in the US Southwest revealed its ubiquity and its dispersal-limited, aggregated spatial distribution and incidence. Overall, its activity reduces biocrust productivity by 10% at the ecosystem scale. My research points to predatory bacteria as a significant, but overlooked, ecological force in shaping soil microbiomes.
ContributorsBethany Rakes, Julie Ann (Author) / Garcia-Pichel, Ferran (Thesis advisor) / Gile, Gillian (Committee member) / Cao, Huansheng (Committee member) / Jacobs, Bertram (Committee member) / Arizona State University (Publisher)
Created2022