Matching Items (2)
Filtering by

Clear all filters

149717-Thumbnail Image.png
Description
Coal bed natural gas (CBNG) production has become a significant contribution to the nation's energy supply. Large volumes of water are generated as a byproduct of CBNG extraction, of which this "product water" is relatively high in sodium. High sodicity reduces water quality and limits environmentally compliant disposal options for

Coal bed natural gas (CBNG) production has become a significant contribution to the nation's energy supply. Large volumes of water are generated as a byproduct of CBNG extraction, of which this "product water" is relatively high in sodium. High sodicity reduces water quality and limits environmentally compliant disposal options for producers. Crop irrigation with CBNG product water complies with state and federal laws and is a disposal method that also provides a beneficial use to private landowners. However, this disposal method typically requires gypsum and sulfur soil amendments due to the high levels of sodium in the water, which can reduce soil infiltration and hydraulic conductivity. In this study, I tested a new product called Salt Extractor that was marketed to CBNG producers to ameliorate the negative effects of high sodicity. The experiment was conducted in the Powder River Basin of Wyoming. I used a random block design to compare the soil and vegetation properties of plots following application with CBNG product water and treatments of either Salt Extractor, gypsum and sulfur (conventional), or no treatment (control). Data was analyzed by comparing the amount of change between treatments after watering. Results demonstrated the known ability of gypsum and sulfur to lower the relative sodicity of the soil. Plots treated with Salt Extractor, however, did not improve relative levels of sodicity and exhibited no favorable benefits to vegetation.
ContributorsAdams, Shelly (Author) / Hall, Sharon (Thesis advisor) / Chew, Matt (Committee member) / Stromberg, Juliet (Committee member) / Arizona State University (Publisher)
Created2011
151116-Thumbnail Image.png
Description
Professional environmental scientists are increasingly under pressure to inform and even shape policy. Scientists engage policy effectively when they act within the bounds of objectivity, credibility, and authority, yet significant portions of the scientific community condemn such acts as advocacy. They argue that it is nonobjective, that it risks damaging

Professional environmental scientists are increasingly under pressure to inform and even shape policy. Scientists engage policy effectively when they act within the bounds of objectivity, credibility, and authority, yet significant portions of the scientific community condemn such acts as advocacy. They argue that it is nonobjective, that it risks damaging the credibility of science, and that it is an abuse of authority. This means objectivity, credibility, and authority deserve direct attention before the policy advocacy quagmire can be reasonably understood. I investigate the meaning of objectivity in science and that necessarily brings the roles of values in science into question. This thesis is a sociological study of the roles environmental values play in the decisions of environmental scientists working in the institution of academia. I argue that the gridlocked nature of the environmental policy advocacy debates can be traced to what seems to be a deep tension and perhaps confusion among these scientists. I provide empirical evidence of this tension and confusion through the use of in depth semi-structured interviews among a sampling of academic environmental scientists (AES). I show that there is a struggle for these AES to reconcile their support for environmentalist values and goals with their commitment to scientific objectivity and their concerns about being credible scientists in the academy. Additionally, I supplemented my data collection with environmental sociology and history, plus philosophy and sociology of science literatures. With this, I developed a system for understanding values in science (of which environmental values are a subset) with respect to the limits of my sample and study. This examination of respondent behavior provides support that it is possible for AES to act on their environmental values without compromising their objectivity, credibility, and authority. These scientists were not likely to practice this in conversations with colleagues and policy-makers, but were likely to behave this way with students. The legitimate extension of this behavior is a viable route for continuing to integrate the human and social dimensions of environmental science into its practice, its training, and its relationship with policy.
ContributorsAppleton, Caroline (Author) / Minteer, Ben (Thesis advisor) / Chew, Matt (Committee member) / Armendt, Brad (Committee member) / Arizona State University (Publisher)
Created2012