Matching Items (16)
Filtering by

Clear all filters

153216-Thumbnail Image.png
Description
For animals that experience annual cycles of gonad development, the seasonal timing (phenology) of gonad growth is a major adaptation to local environmental conditions. To optimally time seasonal gonad growth, animals use environmental cues that forecast future conditions. The availability of food is one such environmental cue. Although the importance

For animals that experience annual cycles of gonad development, the seasonal timing (phenology) of gonad growth is a major adaptation to local environmental conditions. To optimally time seasonal gonad growth, animals use environmental cues that forecast future conditions. The availability of food is one such environmental cue. Although the importance of food availability has been appreciated for decades, the physiological mechanisms underlying the modulation of seasonal gonad growth by this environmental factor remain poorly understood.

Urbanization is characterized by profound environmental changes, and urban animals must adjust to an environment vastly different from that of their non-urban conspecifics. Evidence suggests that birds adjust to urban areas by advancing the timing of seasonal breeding and gonad development, compared to their non-urban conspecifics. A leading hypothesis to account for this phenomenon is that food availability is elevated in urban areas, which improves the energetic status of urban birds and enables them to initiate gonad development earlier than their non-urban conspecifics. However, this hypothesis remains largely untested.

My dissertation dovetailed comparative studies and experimental approaches conducted in field and captive settings to examine the physiological mechanisms by which food availability modulates gonad growth and to investigate whether elevated food availability in urban areas advances the phenology of gonad growth in urban birds. My captive study demonstrated that energetic status modulates reproductive hormone secretion, but not gonad growth. By contrast, free-ranging urban and non-urban birds did not differ in energetic status or plasma levels of reproductive hormones either in years in which urban birds had advanced phenology of gonad growth or in a year that had no habitat-related disparity in seasonal gonad growth. Therefore, my dissertation provides no support for the hypothesis that urban birds begin seasonal gonad growth because they are in better energetic status and increase the secretion of reproductive hormones earlier than non-urban birds. My studies do suggest, however, that the phenology of key food items and the endocrine responsiveness of the reproductive system may contribute to habitat-related disparities in the phenology of gonad growth.
ContributorsDavies, Scott (Author) / Deviche, Pierre (Thesis advisor) / Sweazea, Karen (Committee member) / McGraw, Kevin (Committee member) / Orchinik, Miles (Committee member) / Warren, Paige (Committee member) / Arizona State University (Publisher)
Created2014
150474-Thumbnail Image.png
Description
Conditions during development can shape the expression of traits at adulthood, a phenomenon called developmental plasticity. In this context, factors such as nutrition or health state during development can affect current and subsequent physiology, body size, brain structure, ornamentation, and behavior. However, many of the links between developmental and adult

Conditions during development can shape the expression of traits at adulthood, a phenomenon called developmental plasticity. In this context, factors such as nutrition or health state during development can affect current and subsequent physiology, body size, brain structure, ornamentation, and behavior. However, many of the links between developmental and adult phenotype are poorly understood. I performed a series of experiments using a common molecular currency - carotenoid pigments - to track somatic and reproductive investments through development and into adulthood. Carotenoids are red, orange, or yellow pigments that: (a) animals must acquire from their diets, (b) can be physiologically beneficial, acting as antioxidants or immunostimulants, and (c) color the sexually attractive features (e.g., feathers, scales) of many animals. I studied how carotenoid nutrition and immune challenges during ontogeny impacted ornamental coloration and immune function of adult male mallard ducks (Anas platyrhynchos). Male mallards use carotenoids to pigment their yellow beak, and males with more beaks that are more yellow are preferred as mates, have increased immune function, and have higher quality sperm. In my dissertation work, I established a natural context for the role that carotenoids and body condition play in the formation of the adult phenotype and examined how early-life experiences, including immune challenges and dietary access to carotenoids, affect adult immune function and ornamental coloration. Evidence from mallard ducklings in the field showed that variation in circulating carotenoid levels at hatch are likely driven by maternal allocation of carotenoids, but that carotenoid physiology shifts during the subsequent few weeks to reflect individual foraging habits. In the lab, adult beak color expression and immune function were more tightly correlated with body condition during growth than body condition during subsequent stages of development or adulthood. Immune challenges during development affected adult immune function and interacted with carotenoid physiology during adulthood, but did not affect adult beak coloration. Dietary access to carotenoids during development, but not adulthood, also affected adult immune function. Taken together, these results highlight the importance of the developmental stage in shaping certain survival-related traits (i.e., immune function), and lead to further questions regarding the development of ornamental traits.
ContributorsButler, Michael (Author) / McGraw, Kevin J. (Thesis advisor) / Chang, Yung (Committee member) / Deviche, Pierre (Committee member) / DeNardo, Dale (Committee member) / Rutowski, Ronald (Committee member) / Arizona State University (Publisher)
Created2012
150967-Thumbnail Image.png
Description
Colorful ornaments in animals often serve as sexually selected signals of quality. While pigment-based colors are well-studied in these regards, structural colors that result from the interaction of light with photonic nanostructures are comparatively understudied in terms of their consequences in social contexts, their costs of production, and even the

Colorful ornaments in animals often serve as sexually selected signals of quality. While pigment-based colors are well-studied in these regards, structural colors that result from the interaction of light with photonic nanostructures are comparatively understudied in terms of their consequences in social contexts, their costs of production, and even the best way to measure them. Iridescent colors are some of the most brilliant and conspicuous colors in nature, and I studied the measurement, condition-dependence, and signaling role of iridescence in Anna's hummingbirds (Calypte anna). While most animal colors are easily quantified using well-established spectrophotometric techniques, the unique characteristics of iridescent colors present challenges to measurement and opportunities to quantify novel color metrics. I designed and tested an apparatus for careful control and measurement of viewing geometry and highly repeatable measurements. These measurements could be used to accurately characterize individual variation in iridescent Anna's hummingbirds to examine their condition-dependence and signaling role. Next, I examined the literature published to date for evidence of condition-dependence of structural colors in birds. Using meta-analyses, I found that structural colors of all three types - white, ultra-violet/blue, and iridescence - are significantly condition-dependent, meaning that they can convey information about quality to conspecifics. I then investigated whether iridescent colors were condition-dependent in Anna's hummingbirds both in a field correlational study and in an experimental study. Throughout the year, I found that iridescent feathers in both male and female Anna's hummingbirds become less brilliant as they age. Color was not correlated with body condition in any age/sex group. However, iridescent coloration in male Anna's hummingbirds was significantly affected by experimental protein in the diet during feather growth, indicating that iridescent color may signal diet quality. Finally, I examined how iridescent colors were used to mediate social competitions in male and female Anna's hummingbirds. Surprisingly, males that were less colorful won significantly more contests than more colorful males, and colorful males received more aggression. Less colorful males may be attempting to drive away colorful neighbors that may be preferred mates. Female iridescent ornament size and color was highly variable, but did not influence contest outcomes or aggression.
ContributorsMeadows, Melissa (Author) / McGraw, Kevin J. (Thesis advisor) / Rutowski, Ronald L (Committee member) / Sabo, John L (Committee member) / Alcock, John (Committee member) / Deviche, Pierre (Committee member) / Arizona State University (Publisher)
Created2012
151137-Thumbnail Image.png
Description
Though for most of the twentieth century, dogma held that the adult brain was post-mitotic, it is now known that adult neurogenesis is widespread among vertebrates, from fish, amphibians, reptiles and birds to mammals including humans. Seasonal changes in adult neurogenesis are well characterized in the song control system of

Though for most of the twentieth century, dogma held that the adult brain was post-mitotic, it is now known that adult neurogenesis is widespread among vertebrates, from fish, amphibians, reptiles and birds to mammals including humans. Seasonal changes in adult neurogenesis are well characterized in the song control system of song birds, and have been found in seasonally breeding mammals as well. In contrast to more derived vertebrates, such as mammals, where adult neurogenesis is restricted primarily to the olfactory bulb and the dentate gyrus of the hippocampus, neurogenesis is widespread along the ventricles of adult amphibians. I hypothesized that seasonal changes in adult amphibian brain cell proliferation and survival are a potential regulator of reproductive neuroendocrine function. Adult, male American bullfrogs (Rana catesbeiana; aka Lithobates catesbeianus), were maintained in captivity for up to a year under season-appropriate photoperiod. Analysis of hormone levels indicated seasonal changes in plasma testosterone concentration consistent with field studies. Using the thymidine analogue 5-bromo-2-deoxyuridine (BrdU) as a marker for newly generated cells, two differentially regulated aspects of brain cell neogenesis were tracked; that is, proliferation and survival. Seasonal differences were found in BrdU labeling in several brain areas, including the olfactory bulb, medial pallium, nucleus accumbens and the infundibular hypothalamus. Clear seasonal differences were also found in the pars distalis region of the pituitary gland, an important component of neuroendocrine pathways. BrdU labeling was also examined in relation to two neuropeptides important for amphibian reproduction: arginine vasotocin and gonadotropin releasing hormone. No cells co-localized with BrdU and either neuropeptide, but new born cells were found in close proximity to neuropeptide-containing neurons. These data suggest that seasonal differences in brain and pituitary gland cell neogenesis are a potential neuroendocrine regulatory mechanism.
ContributorsMumaw, Luke (Author) / Orchinik, Miles (Thesis advisor) / Deviche, Pierre (Committee member) / Chandler, Douglas (Committee member) / Arizona State University (Publisher)
Created2012
153959-Thumbnail Image.png
Description
Sexual and social signals have long been thought to play an important role in speciation and diversity; hence, investigations of intraspecific communication may lead to important insights regarding key processes of evolution. Though we have learned much about the control, function, and evolution of animal communication by studying several very

Sexual and social signals have long been thought to play an important role in speciation and diversity; hence, investigations of intraspecific communication may lead to important insights regarding key processes of evolution. Though we have learned much about the control, function, and evolution of animal communication by studying several very common signal types, investigating rare classes of signals may provide new information about how and why animals communicate. My dissertation research focused on rapid physiological color change, a rare signal-type used by relatively few taxa. To answer longstanding questions about this rare class of signals, I employed novel methods to measure rapid color change signals of male veiled chameleons Chamaeleo calyptratus in real-time as seen by the intended conspecific receivers, as well as the associated behaviors of signalers and receivers. In the context of agonistic male-male interactions, I found that the brightness achieved by individual males and the speed of color change were the best predictors of aggression and fighting ability. Conversely, I found that rapid skin darkening serves as a signal of submission for male chameleons, reducing aggression from winners when displayed by losers. Additionally, my research revealed that the timing of maximum skin brightness and speed of brightening were the best predictors of maximum bite force and circulating testosterone levels, respectively. Together, these results indicated that different aspects of color change can communicate information about contest strategy, physiology, and performance ability. Lastly, when I experimentally manipulated the external appearance of chameleons, I found that "dishonestly" signaling individuals (i.e. those whose behavior did not match their manipulated color) received higher aggression from unpainted opponents. The increased aggression received by dishonest signalers suggests that social costs play an important role in maintaining the honesty of rapid color change signals in veiled chameleons. Though the color change abilities of chameleons have interested humans since the time of Aristotle, little was previously known about the signal content of such changes. Documenting the behavioral contexts and information content of these signals has provided an important first step in understanding the current function, underlying control mechanisms, and evolutionary origins of this rare signal type.
ContributorsLigon, Russell (Author) / McGraw, Kevin J. (Committee member) / DeNardo, Dale F (Committee member) / Karsten, Kristopher B (Committee member) / Rutowski, Ronald L (Committee member) / Deviche, Pierre (Committee member) / Arizona State University (Publisher)
Created2015
157012-Thumbnail Image.png
Description
Human-inhabited or -disturbed areas pose many unique challenges for wildlife, including increased human exposure, novel challenges, such as finding food or nesting sites in novel structures, anthropogenic noises, and novel predators. Animals inhabiting these environments must adapt to such changes by learning to exploit new resources and avoid danger. To

Human-inhabited or -disturbed areas pose many unique challenges for wildlife, including increased human exposure, novel challenges, such as finding food or nesting sites in novel structures, anthropogenic noises, and novel predators. Animals inhabiting these environments must adapt to such changes by learning to exploit new resources and avoid danger. To my knowledge no study has comprehensively assessed behavioral reactions of urban and rural populations to numerous novel environmental stimuli. I tested behavioral responses of urban, suburban, and rural house finches (Haemorhous mexicanus) to novel stimuli (e.g. objects, noises, food), to presentation of a native predator model (Accipiter striatus) and a human, and to two problem-solving challenges (escaping confinement and food-finding). Although I found few population-level differences in behavioral responses to novel objects, environment, and food, I found compelling differences in how finches from different sites responded to novel noise. When played a novel sound (whale call or ship horn), urban and suburban house finches approached their food source more quickly and spent more time on it than rural birds, and urban and suburban birds were more active during the whale-noise presentation. In addition, while there were no differences in response to the native predator, rural birds showed higher levels of stress behaviors when presented with a human. When I replicated this study in juveniles, I found that exposure to humans during development more accurately predicted behavioral differences than capture site. Finally, I found that urban birds were better at solving an escape problem, whereas rural birds were better at solving a food-finding challenge. These results indicate that not all anthropogenic changes affect animal populations equally and that determining the aversive natural-history conditions and challenges of taxa may help urban ecologists better understand the direction and degree to which animals respond to human-induced rapid environmental alterations.
ContributorsWeaver, Melinda (Author) / McGraw, Kevin J. (Thesis advisor) / Rutowski, Ronald (Committee member) / Pratt, Stephen (Committee member) / Bateman, Heather (Committee member) / Deviche, Pierre (Committee member) / Arizona State University (Publisher)
Created2018
135651-Thumbnail Image.png
Description
Honey bees (Apis mellifera) are responsible for pollinating nearly 80\% of all pollinated plants, meaning humans depend on honey bees to pollinate many staple crops. The success or failure of a colony is vital to global food production. There are various complex factors that can contribute to a colony's failure,

Honey bees (Apis mellifera) are responsible for pollinating nearly 80\% of all pollinated plants, meaning humans depend on honey bees to pollinate many staple crops. The success or failure of a colony is vital to global food production. There are various complex factors that can contribute to a colony's failure, including pesticides. Neonicotoids are a popular pesticide that have been used in recent times. In this study we concern ourselves with pesticides and its impact on honey bee colonies. Previous investigations that we draw significant inspiration from include Khoury et Al's \emph{A Quantitative Model of Honey Bee Colony Population Dynamics}, Henry et Al's \emph{A Common Pesticide Decreases Foraging Success and Survival in Honey Bees}, and Brown's \emph{ Mathematical Models of Honey Bee Populations: Rapid Population Decline}. In this project we extend a mathematical model to investigate the impact of pesticides on a honey bee colony, with birth rates and death rates being dependent on pesticides, and we see how these death rates influence the growth of a colony. Our studies have found an equilibrium point that depends on pesticides. Trace amounts of pesticide are detrimental as they not only affect death rates, but birth rates as well.
ContributorsSalinas, Armando (Author) / Vaz, Paul (Thesis director) / Jones, Donald (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136133-Thumbnail Image.png
Description
Currently in synthetic biology only the Las, Lux, and Rhl quorum sensing pathways have been adapted for broad engineering use. Quorum sensing allows a means of cell to cell communication in which a designated sender cell produces quorum sensing molecules that modify gene expression of a designated receiver cell. While

Currently in synthetic biology only the Las, Lux, and Rhl quorum sensing pathways have been adapted for broad engineering use. Quorum sensing allows a means of cell to cell communication in which a designated sender cell produces quorum sensing molecules that modify gene expression of a designated receiver cell. While useful, these three quorum sensing pathways exhibit a nontrivial level of crosstalk, hindering robust engineering and leading to unexpected effects in a given design. To address the lack of orthogonality among these three quorum sensing pathways, previous scientists have attempted to perform directed evolution on components of the quorum sensing pathway. While a powerful tool, directed evolution is limited by the subspace that is defined by the protein. For this reason, we take an evolutionary biology approach to identify new orthogonal quorum sensing networks and test these networks for cross-talk with currently-used networks. By charting characteristics of acyl homoserine lactone (AHL) molecules used across quorum sensing pathways in nature, we have identified favorable candidate pathways likely to display orthogonality. These include Aub, Bja, Bra, Cer, Esa, Las, Lux, Rhl, Rpa, and Sin, which we have begun constructing and testing. Our synthetic circuits express GFP in response to a quorum sensing molecule, allowing quantitative measurement of orthogonality between pairs. By determining orthogonal quorum sensing pairs, we hope to identify and adapt novel quorum sensing pathways for robust use in higher-order genetic circuits.
ContributorsMuller, Ryan (Author) / Haynes, Karmella (Thesis director) / Wang, Xiao (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Department of Chemistry and Biochemistry (Contributor) / School of Life Sciences (Contributor)
Created2015-05
136136-Thumbnail Image.png
Description
Three populations of experimentally evolved Drosophila melanogaster populations made up of high temperature (H, constant 25 ᵒC), low temperature (C, constant 16 ᵒC) and temporal homogeneity (T, environment changes between 16 ᵒC and 25 ᵒC) were prepared and assayed to determine difference in citrate synthase activity. Between the three groups,

Three populations of experimentally evolved Drosophila melanogaster populations made up of high temperature (H, constant 25 ᵒC), low temperature (C, constant 16 ᵒC) and temporal homogeneity (T, environment changes between 16 ᵒC and 25 ᵒC) were prepared and assayed to determine difference in citrate synthase activity. Between the three groups, the results were inconclusive: the resulting reaction rates in units of nmol min-1mgfly-1 were 81.8 + 20.6, 101 + 15.6, and 96.9 + 25.2 for the hot (H), cold (C), and temporally homogeneous (T) groups, respectively. We conclude that the high associated variability was due to a lack of control regarding the collection time of the experimentally evolved Drosophila.
ContributorsBelohlavek, David (Author) / Angilletta, Michael (Thesis director) / Francisco, Wilson (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2015-05
133208-Thumbnail Image.png
Description
For colonies of ponerine ant species, sterility regulation after a founding queen's death is not totally achieved in the worker caste, and the possibility of sexual reproduction is opened to workers. The persisting survival of these colonies is dependent on capturing the optimal reproductive ratio; yet, an informational gap bounds

For colonies of ponerine ant species, sterility regulation after a founding queen's death is not totally achieved in the worker caste, and the possibility of sexual reproduction is opened to workers. The persisting survival of these colonies is dependent on capturing the optimal reproductive ratio; yet, an informational gap bounds the mechanisms detailing the selection of new reproductives and the suppression of ovarian development in rejected reproductives. We investigated the mechanisms of worker policing, one of the primary methods of ovarian suppression, through continuous video observation for a period of five days at the start of colony instability. Observations suggest policing in H. saltator is performed by a majority of a colony, including potential reproductives, and requires multiple events to fully discourage ovarian growth.
ContributorsChien, Jeffrey (Co-author) / Barat Ali, Fatima (Co-author) / Kang, Yun (Thesis director) / Liebig, Juergen (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12