Matching Items (2)
Filtering by

Clear all filters

152018-Thumbnail Image.png
Description
The research indicated effective mathematics teaching to be more complex than assuming the best predictor of student achievement in mathematics is the mathematical content knowledge of a teacher. This dissertation took a novel approach to addressing the idea of what it means to examine how a teacher's knowledge of mathematics

The research indicated effective mathematics teaching to be more complex than assuming the best predictor of student achievement in mathematics is the mathematical content knowledge of a teacher. This dissertation took a novel approach to addressing the idea of what it means to examine how a teacher's knowledge of mathematics impacts student achievement in elementary schools. Using a multiple case study design, the researcher investigated teacher knowledge as a function of the Mathematics Teaching Cycle (NCTM, 2007). Three cases (of two teachers each) were selected using a compilation of Learning Mathematics for Teaching (LMT) measures (LMT, 2006) and Developing Mathematical Ideas (DMI) measures (Higgins, Bell, Wilson, McCoach, & Oh, 2007; Bell, Wilson, Higgins, & McCoach, 2010) and student scores on the Arizona Assessment Collaborative (AzAC). The cases included teachers with: a) high knowledge & low student achievement v low knowledge & high student achievement, b) high knowledge & average achievement v low knowledge & average achievement, c) average knowledge & high achievement v average knowledge & low achievement, d) two teachers with average achievement & very high student achievement. In the end, my data suggested that MKT was only partially utilized across the contrasting teacher cases during the planning process, the delivery of mathematics instruction, and subsequent reflection. Mathematical Knowledge for Teaching was utilized differently by teachers with high student gains than those with low student gains. Because of this insight, I also found that MKT was not uniformly predictive of student gains across my cases, nor was it predictive of the quality of instruction provided to students in these classrooms.
ContributorsBurke, Margaret Kathleen (Author) / Middleton, James A. (Thesis advisor) / Sloane, Finbarr (Thesis advisor) / Battey, Daniel S (Committee member) / Arizona State University (Publisher)
Created2013
155002-Thumbnail Image.png
Description
This dissertation reports three studies of students’ and teachers’ meanings for quotient, fraction, measure, rate, and rate of change functions. Each study investigated individual’s schemes (or meanings) for foundational mathematical ideas. Conceptual analysis of what constitutes strong meanings for fraction, measure, and rate of change is critical for each study.

This dissertation reports three studies of students’ and teachers’ meanings for quotient, fraction, measure, rate, and rate of change functions. Each study investigated individual’s schemes (or meanings) for foundational mathematical ideas. Conceptual analysis of what constitutes strong meanings for fraction, measure, and rate of change is critical for each study. In particular, each study distinguishes additive and multiplicative meanings for fraction and rate of change.

The first paper reports an investigation of 251 high school mathematics teachers’ meanings for slope, measurement, and rate of change. Most teachers conveyed primarily additive and formulaic meanings for slope and rate of change on written items. Few teachers conveyed that a rate of change compares the relative sizes of changes in two quantities. Teachers’ weak measurement schemes were associated with limited meanings for rate of change. Overall, the data suggests that rate of change should be a topics of targeted professional development.

The second paper reports the quantitative part of a mixed method study of 153 calculus students at a large public university. The majority of calculus students not only have weak meanings for fraction, measure, and constant rates but that having weak meanings is predictive of lower scores on a test about rate of change functions. Regression is used to determine the variation in student success on questions about rate of change functions (derivatives) associated with variation in success on fraction, measure, rate, and covariation items.

The third paper investigates the implications of two students’ fraction schemes for their understanding of rate of change functions. Students’ weak measurement schemes obstructed their ability to construct a rate of change function given the graph of an original function. The two students did not coordinate three levels of units, and struggled to relate partitioning and iterating in a way that would help them reason about fractions, rate of change, and rate of change functions.

Taken as a whole the studies show that the majority of secondary teachers and calculus students studied have weak meanings for foundational ideas and that these weaknesses cause them problems in making sense of more applications of rate of change.
ContributorsByerley, Cameron (Author) / Thompson, Patrick W (Thesis advisor) / Carlson, Marilyn P (Committee member) / Middleton, James A. (Committee member) / Saldanha, Luis (Committee member) / Mcnamara, Allen (Committee member) / Arizona State University (Publisher)
Created2016