Matching Items (6)
Filtering by

Clear all filters

133406-Thumbnail Image.png
Description
This project examined the relationship of science teachers' knowledge about the laws relating to the teaching of creationism/evolution in public schools using multiple demographic factors. Overall, teachers correctly identified only 7 out of 10 "yes" or "no" answers about the laws, this score is only slightly better than the expected

This project examined the relationship of science teachers' knowledge about the laws relating to the teaching of creationism/evolution in public schools using multiple demographic factors. Overall, teachers correctly identified only 7 out of 10 "yes" or "no" answers about the laws, this score is only slightly better than the expected 5 out of 10 that would be obtained from guessing. Statistically significant results in differences in the overall score on the survey were found for three major variables. Teachers who say creationism should be taught in the classroom have a lower score than those who say it should not be taught in the classroom, with a large effect size. Teachers who teach biology or a life science had significantly higher scores than those who do not, with a small/medium effect size. Older teachers had significantly higher scores than younger teachers, with a small effect size. Identifying the demographic variables that effect teacher knowledge about the laws is the first step to determining how to educate teachers on the legality teaching of creationism/evolution in public school classrooms to avoid violations of the First Amendment.
ContributorsSorge, Aidan Bennet (Author) / Parker, John (Thesis director) / Lynch, John (Committee member) / School for the Future of Innovation in Society (Contributor) / Department of English (Contributor) / College of Integrative Sciences and Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133795-Thumbnail Image.png
Description
Since its discovery in 1524, many people have characterized the vermiform appendix. Charles Darwin considered the human appendix to be a vestige and a useless structure. Others at the time opposed this hypothesis. However, Darwin's hypothesis became prevalent one until recently when there became a renewed interest in the appendix

Since its discovery in 1524, many people have characterized the vermiform appendix. Charles Darwin considered the human appendix to be a vestige and a useless structure. Others at the time opposed this hypothesis. However, Darwin's hypothesis became prevalent one until recently when there became a renewed interest in the appendix because of advancements in microscopes, knowledge of the immune system, and phylogenetics. In this review, I will argue that the vermiform appendix, although still not completely understood, has important functions. First, I will give the anatomy of the appendix. I will discuss the comparative anatomy between different animals and also primates. I will address the effects of appendicitis and appendectomy. I will give background on vestigial structures and will discuss if the appendix is a vestige. Following, I will review the evolution of the appendix. Finally, I will argue that the function of the appendix is as an immune organ, including discussion of gut-associated lymphoid tissue (GALT), development of lymphoid follicles in GALT and their comparison within different organs, Immunoglobulin A (IgA) function in the gut, biofilms as evidence that the appendix is a safe-house for beneficial bacteria, re-inoculation of the bowel, and protection against recurring infection. I will conclude with future studies that should be conducted to further our understanding of the vermiform appendix.
ContributorsPrestwich, Shelby Elizabeth (Author) / Cartwright, Reed (Thesis director) / Lynch, John (Committee member) / Furstenau, Tara (Committee member) / School of Geographical Sciences and Urban Planning (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134043-Thumbnail Image.png
Description
Dire wolves have recently risen to fame as a result of the popular television program Game of Thrones, and thus many viewers know dire wolves as the sigil and loyal companions of the Stark house. Far fewer recognize dire wolves by their scientific name, Canis dirus, or understand the population

Dire wolves have recently risen to fame as a result of the popular television program Game of Thrones, and thus many viewers know dire wolves as the sigil and loyal companions of the Stark house. Far fewer recognize dire wolves by their scientific name, Canis dirus, or understand the population history of this ‘fearsome wolf’ species that roamed the Americas until the megafaunal mass extinction event of the Late Pleistocene. Although numerous studies have examined the species using morphological and geographical methods, thus far their results have been either inconclusive or contradictory. Remaining questions include the relationships dire wolves share with other members of the Canis genus and the internal structure of their populations. Advancements in ancient DNA recovery methods may make it possible to study dire wolf specimens at the molecular level for the first time and may therefore prove useful in clarifying the answers to these questions. Eighteen dire wolf specimens were collected from across the United States and subjected to ancient DNA extraction, library preparation, amplification and purification, bait preparation and capture, and next-generation sequencing. There was an average of 76.9 unique reads and 5.73% coverage when mapped to the Canis familiaris reference genome in ultraconserved regions of the mitochondrial genome. The results indicate that endogenous ancient DNA was not successfully recovered and perhaps ancient DNA recovery methods have not advanced to the point of retrieving informative amounts of DNA from particularly old, thermally degraded specimens. Nevertheless, the ever-changing nature of ancient DNA research makes it vital to continually test the limitations of the field and suggests that ancient DNA recovery methods will prove useful in illuminating dire wolf population history at some point in the future.
ContributorsSkerry, Katherine Marie (Author) / Stone, Anne (Thesis director) / Amdam, Gro (Committee member) / Larson, Greger (Committee member) / School of Human Evolution and Social Change (Contributor) / School of Nutrition and Health Promotion (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
135114-Thumbnail Image.png
Description
Unlike the autosomes, recombination on the sex chromosomes is limited to the pseudoautosomal regions (PARs) at each end of the chromosome. PAR1 spans approximately 2.7 Mb from the tip of the proximal arm of each sex chromosome, and a pseudoautosomal boundary between the PAR1 and non-PAR region is thought to

Unlike the autosomes, recombination on the sex chromosomes is limited to the pseudoautosomal regions (PARs) at each end of the chromosome. PAR1 spans approximately 2.7 Mb from the tip of the proximal arm of each sex chromosome, and a pseudoautosomal boundary between the PAR1 and non-PAR region is thought to have evolved from a Y-specific inversion that suppressed recombination across the boundary. In addition to the two PARs, there is also a human-specific X-transposed region (XTR) that was duplicated from the X to the Y chromosome. Genetic diversity is expected to be higher in recombining than nonrecombining regions, particularly because recombination reduces the effects of linked selection, allowing neutral variation to accumulate. We previously showed that diversity decreases linearly across the previously defined pseudoautosomal boundary (rather than drop suddenly at the boundary), suggesting that the pseudoautosomal boundary may not be as strict as previously thought. In this study, we analyzed data from 1271 genetic females to explore the extent to which the pseudoautosomal boundary varies among human populations (broadly, African, European, South Asian, East Asian, and the Americas). We found that, in all populations, genetic diversity was significantly higher in the PAR1 and XTR than in the non-PAR regions, and that diversity decreased linearly from the PAR1 to finally reach a non-PAR value well past the pseudoautosomal boundary in all populations. However, we also found that the location at which diversity changes from reflecting the higher PAR1 diversity to the lower nonPAR diversity varied by as much as 500 kb among populations. The lack of genetic evidence for a strict pseudoautosomal boundary and the variability in patterns of diversity across the pseudoautosomal boundary are consistent with two potential explanations: (1) the boundary itself may vary across populations, or (2) that population-specific demographic histories have shaped diversity across the pseudoautosomal boundary.
ContributorsCotter, Daniel Juetten (Author) / Wilson Sayres, Melissa (Thesis director) / Stone, Anne (Committee member) / Webster, Timothy (Committee member) / School of Life Sciences (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
148289-Thumbnail Image.png
Description

Bermuda Land Snails make up a genus called Poecilozonites that is endemic to Bermuda and is extensively present in its fossil record. These snails were also integral to the creation of the theory of punctuated equilibrium. The DNA of mollusks is difficult to sequence because of a class of proteins

Bermuda Land Snails make up a genus called Poecilozonites that is endemic to Bermuda and is extensively present in its fossil record. These snails were also integral to the creation of the theory of punctuated equilibrium. The DNA of mollusks is difficult to sequence because of a class of proteins called mucopolysaccharides that are present in high concentrations in mollusk tissue, and are not removed with standard DNA extraction methods. They inhibit Polymerase Chain Reactions (PCRs) and interfere with Next Generation Sequencing methods. This paper will discuss the DNA extraction methods that were designed to remove the inhibitory proteins that were tested on another gastropod species (Pomacea canaliculata). These were chosen because they are invasive and while they are not pulmonates, they are similar enough to Bermuda Land Snails to reliably test extraction methods. The methods that were tested included two commercially available kits: the Qiagen Blood and Tissue Kit and the Omega Biotek Mollusc Extraction Kit, and one Hexadecyltrimethylammonium Bromide (CTAB) Extraction method that was modified for use on mollusk tissue. The Blood and Tissue kit produced some DNA, the mollusk kit produced almost none, and the CTAB Extraction Method produced the highest concentrations on average, and may prove to be the most viable option for future extractions. PCRs attempted with the extracted DNA have all failed, though it is likely due to an issue with reagents. Further spectrographic analysis of the DNA from the test extractions has shown that they were successful at removing mucopolysaccharides. When the protocol is optimized, it will be used to extract DNA from the tissue from six individuals from each of the two extant species of Bermuda Land Snails. This DNA will be used in several experiments involving Next Generation Sequencing, with the goal of assembling a variety of genome data. These data will then be used to a construct reference genome for Bermuda Land Snails. The genomes generated by this project will be used in population genetic analyses between individuals of the same species, and between individuals of different species. These analyses will then be used to aid in conservation efforts for the species.

ContributorsClark, Patrick Louis (Author) / Stone, Anne (Thesis director) / Winingear, Stevie (Committee member) / School of Life Sciences (Contributor, Contributor) / School of Human Evolution & Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Due to what is known as the “biologically desert fallacy” and the pervasive westernized ideal of wilderness that has influenced widespread American Conservation culture for millennia, urban areas have long been deemed as areas devoid of biodiversity. However, cities can contribute significantly to regional biodiversity and provide vital niches for

Due to what is known as the “biologically desert fallacy” and the pervasive westernized ideal of wilderness that has influenced widespread American Conservation culture for millennia, urban areas have long been deemed as areas devoid of biodiversity. However, cities can contribute significantly to regional biodiversity and provide vital niches for wildlife, illuminating the growing awareness that cities are crucial to the future of conservation and combating the global biodiversity crisis. In terms of the biodiversity crisis, bats are a relevant species of concern. In many studies, different bat species have been broadly classified according to their ability to adapt to urban environments. There is evidence that urban areas can filter bat species based on traits and behavior, with many bats possessing traits that do not allow them to live in cities. The three broad categories are urban avoiders, urban adapters, or urban exploiters based upon where their abundance is highest along a gradient of urban intensity. A common example of an urban exploiter bat is a Mexican Free-tailed bat, which can thrive and rely on urban environments and it is found in the Phoenix Metropolitan area. Bats are important as even in urban environments they play vital ecological roles such as cactus pollination, insect management, and seed dispersal. Bat Crazy is a thesis project focused on urban enhancement and the field of urban biodiversity. The goals of this thesis are to observe how bio-conscious urban cities that work to promote species conservation can serve as a positive tool to promote biodiversity and foster community education and engagement for their urban environment.

ContributorsKaiser, Nicole (Author) / Senko, Jesse (Thesis director) / Angilletta, Michael (Committee member) / Lynch, John (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / School of Life Sciences (Contributor)
Created2023-05