Matching Items (5)
Filtering by

Clear all filters

150616-Thumbnail Image.png
Description
Infectious diseases have emerged as a significant threat to wildlife. Environmental change is often implicated as an underlying factor driving this emergence. With this recent rise in disease emergence and the acceleration of environmental change, it is important to identify the environmental factors that alter host-pathogen dynamics and their underlying

Infectious diseases have emerged as a significant threat to wildlife. Environmental change is often implicated as an underlying factor driving this emergence. With this recent rise in disease emergence and the acceleration of environmental change, it is important to identify the environmental factors that alter host-pathogen dynamics and their underlying mechanisms. The emerging pathogen Batrachochytrium dendrobatidis (Bd) is a clear example of the negative effects infectious diseases can have on wildlife. Bd is linked to global declines in amphibian diversity and abundance. However, there is considerable variation in population-level responses to Bd, with some hosts experiencing marked declines while others persist. Environmental factors may play a role in this variation. This research used populations of pond-breeding chorus frogs (Pseudacris maculata) in Arizona to test if three rapidly changing environmental factors nitrogen (N), phosphorus (P), and temperature influence the presence, prevalence, and severity of Bd infections. I evaluated the reliability of a new technique for detecting Bd in water samples and combined this technique with animal sampling to monitor Bd in wild chorus frogs. Monitoring from 20 frog populations found high Bd presence and prevalence during breeding. A laboratory experiment found 85% adult mortality as a result of Bd infection; however, estimated chorus frog densities in wild populations increased significantly over two years of sampling despite high Bd prevalence. Presence, prevalence, and severity of Bd infections were not correlated with aqueous concentrations of N or P. There was, however, support for an annual temperature-induced reduction in Bd prevalence in newly metamorphosed larvae. A simple mathematical model suggests that this annual temperature-induced reduction of Bd infections in larvae in combination with rapid host maturation may help chorus frog populations persist despite high adult mortality. These results demonstrate that Bd can persist across a wide range of environmental conditions, providing little support for the influence of N and P on Bd dynamics, and show that water temperature may play an important role in altering Bd dynamics, enabling chorus frogs to persist with this pathogen. These findings demonstrate the importance of environmental context and host life history for the outcome of host-pathogen interactions.
ContributorsHyman, Oliver J. (Author) / Collins, James P. (Thesis advisor) / Davidson, Elizabeth W. (Committee member) / Anderies, John M. (Committee member) / Elser, James J. (Committee member) / Escalante, Ananias (Committee member) / Arizona State University (Publisher)
Created2012
134991-Thumbnail Image.png
Description
Batrachochytrium dendrobatidis (Bd), the amphibian chytrid fungus causing chytridiomycosis, is the cause of massive amphibian die-offs. As with any host-pathogen relationship, it is paramount to understand the growth and reproduction of the pathogen that causes an infectious disease outbreak. The life-cycle of the pathogen, Bd, is strongly influenced by temperature;

Batrachochytrium dendrobatidis (Bd), the amphibian chytrid fungus causing chytridiomycosis, is the cause of massive amphibian die-offs. As with any host-pathogen relationship, it is paramount to understand the growth and reproduction of the pathogen that causes an infectious disease outbreak. The life-cycle of the pathogen, Bd, is strongly influenced by temperature; however, previous research has focused on Bd isolated from limited geographic ranges, and may not be representative of Bd on a global scale. My research examines the relationship between Bd and temperature on the global level to determine the actual thermal maximum of Bd. Six isolates of Bd, from three continents, were incubated at a temperature within the thermal range (21°C) and a temperature higher than the optimal thermal range (27°C). Temperature affected the growth and zoosporangium size of all six isolates of Bd. All six isolates had proliferative growth at 21°C, but at 27°C the amount and quality of growth varied per isolate. My results demonstrate that each Bd isolate has a different response to temperature, and the thermal maximum for growth varies with each isolate. Further understanding of the difference in isolate response to temperature can lead to a better understanding of Bd pathogen dynamics, as well as allow us the ability to identify susceptible hosts and environments before an outbreak.
ContributorsWoodland, Laura Elizabeth (Author) / Collins, James (Thesis director) / Davidson, Elizabeth (Committee member) / Roberson, Robert (Committee member) / School of Politics and Global Studies (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
135463-Thumbnail Image.png
Description
The amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd) has captured human attention because it is a pathogen that has contributed to global amphibian declines. Despite increased research, much is still unknown about how it develops. For example, the fact that Bd exhibits phenotypic plasticity during development was only recently identified. In

The amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd) has captured human attention because it is a pathogen that has contributed to global amphibian declines. Despite increased research, much is still unknown about how it develops. For example, the fact that Bd exhibits phenotypic plasticity during development was only recently identified. In this thesis, the causes of phenotypic plasticity in Bd are tested by exposing the fungus to different substrates, including powdered frog skin and keratin, which seems to play an important role in the fungus's colonization of amphibian epidermis. A novel swelling structure emerging from Bd germlings developed when exposed to keratin and frog skin. This swelling has not been observed in Bd grown in laboratory cultures before, and it is possible that it is analogous to the germ tube Bd develops in vivo. Growth of the swelling suggests that keratin plays a role in the phenotypic plasticity expressed by Bd.
ContributorsBabb-Biernacki, Spenser Jordan (Author) / Collins, James P. (Thesis director) / Roberson, Robert (Committee member) / Brus, Evan (Committee member) / School of Film, Dance and Theatre (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
161628-Thumbnail Image.png
Description
This dissertation investigates how ideas of the right relationships among science, the public, and collective decision-making about science and technology come to be envisioned in constructions of public engagement. In particular, it explores how public engagement has come to be constructed in discourse around gene editing to better understand how

This dissertation investigates how ideas of the right relationships among science, the public, and collective decision-making about science and technology come to be envisioned in constructions of public engagement. In particular, it explores how public engagement has come to be constructed in discourse around gene editing to better understand how it holds together with visions for good, democratic governance of those technologies and with what effects. Using a conceptual idiom of the co-production of science and the social order, I investigate the mutual formation of scientific expertise, responsibility, and democracy through constructions of public engagement. I begin by tracing dominant historical narratives of contemporary public engagement as a continuation of public understanding of science’s projects of social ordering for democratic society. I then analyze collections of prominent expert meetings, publications, discussions, and interventions about development, governance, and societal implications human heritable germline gene editing and gene drives that developed in tandem with commitments to public engagement around those technologies. Synthesizing the evidence from across gene editing discourse, I offer a constructive critique of constructions of public engagement as expressions and evidence of scientific responsibility as ultimately reasserting and reinforcing of scientific experts' authority in gene editing decision-making, despite intentions for public engagement to extend decision-making participation and power to publics. Such constructions of public engagement go unrecognized in gene editing discourse and thereby subtly reinforce broader visions of scientific expertise as essential to good governance by underwriting the legitimacy and authority of scientific experts to act on behalf of public interests. I further argue that the reinforcement of scientific expert authority in gene editing discourse through public engagement also centers scientific experts in a sociotechnical imaginary that I call “not for science alone.” This sociotechnical imaginary envisions scientific experts as guardians and guarantors of good, democratic governance. I then propose a possible alternatives to public engagement alone to improve gene editing governance by orienting discourse around notions of public accountability for potential shared benefits and collective harms of gene editing.
ContributorsRoss, Christian (Author) / Hurlbut, James B. (Thesis advisor) / Maienschein, Jane (Thesis advisor) / Collins, James P. (Committee member) / Crow, Michael M. (Committee member) / Sarewitz, Daniel R. (Committee member) / Arizona State University (Publisher)
Created2021
168510-Thumbnail Image.png
Description
Innovations in undergraduate education have increased the prevalence of active learning courses, online education, and student engagement in the high-impact practice of undergraduate research, however it is unknown whether students with disabilities are able to engage in these innovative learning environments to the same extent that they are able to

Innovations in undergraduate education have increased the prevalence of active learning courses, online education, and student engagement in the high-impact practice of undergraduate research, however it is unknown whether students with disabilities are able to engage in these innovative learning environments to the same extent that they are able to engage in more traditional learning environments. Universities, disability resource centers, and instructors are mandated to provide accommodations to students with disabilities for the purposes of prohibiting discrimination and ensuring equal access to opportunities for individuals with disabilities. Are accommodations being adapted and created for these new types of learning environments? This dissertation reports findings from four studies about the experiences of students with disabilities in these three learning environments, specifically examining the challenges students with disabilities encounter and the emerging recommendations for more effective accommodations. I find that students with disabilities experience challenges in each of these learning environments and that the current suite of accommodations are not sufficient for students with disabilities. I argue that institutions need to consider modifying student accommodations and the process for obtaining them to better support students with disabilities in these evolving learning environments. I also provide recommendations for the ways in which undergraduate science education can be made more accessible and inclusive of students with disabilities.
ContributorsGin, Logan Eugene (Author) / Brownell, Sara E. (Thesis advisor) / Cooper, Katelyn M. (Thesis advisor) / Collins, James P. (Committee member) / Stout, Valerie (Committee member) / Zheng, Yi (Committee member) / Arizona State University (Publisher)
Created2021