Matching Items (3)
Filtering by

Clear all filters

155335-Thumbnail Image.png
Description
Functional traits research has improved our understanding of how plants respond to their environments, identifying key trade-offs among traits. These studies primarily rely on correlative methods to infer trade-offs and often overlook traits that are difficult to measure (e.g., root traits, tissue senescence rates), limiting their predictive ability under novel

Functional traits research has improved our understanding of how plants respond to their environments, identifying key trade-offs among traits. These studies primarily rely on correlative methods to infer trade-offs and often overlook traits that are difficult to measure (e.g., root traits, tissue senescence rates), limiting their predictive ability under novel conditions. I aimed to address these limitations and develop a better understanding of the trait space occupied by trees by integrating data and process models, spanning leaves to whole-trees, via modern statistical and computational methods. My first research chapter (Chapter 2) simultaneously fits a photosynthesis model to measurements of fluorescence and photosynthetic response curves, improving estimates of mesophyll conductance (gm) and other photosynthetic traits. I assessed how gm varies across environmental gradients and relates to other photosynthetic traits for 4 woody species in Arizona. I found that gm was lower at high aridity sites, varied little within a site, and is an important trait for obtaining accurate estimates of photosynthesis and related traits under dry conditions. Chapter 3 evaluates the importance of functional traits for whole-tree performance by fitting an individual-based model of tree growth and mortality to millions of measurements of tree heights and diameters to assess the theoretical trait space (TTS) of “healthy” North American trees. The TTS contained complicated, multi-variate structure indicative of potential trade-offs leading to successful growth. In Chapter 4, I applied an environmental filter (light stress) to the TTS, leading to simulated stand-level mortality rates up to 50%. Tree-level mortality was explained by 6 of the 32 traits explored, with the most important being radiation-use efficiency. The multidimentional space comprising these 6 traits differed in volume and location between trees that survived and died, indicating that selective mortality alters the TTS.
ContributorsFell, Michael (Author) / Ogle, Kiona (Thesis advisor) / Barber, Jarrett (Committee member) / Hultine, Kevin (Committee member) / Franklin, Janet (Committee member) / Day, Thomas (Committee member) / Arizona State University (Publisher)
Created2017
155201-Thumbnail Image.png
Description
Throughout the Southwest, complex geology and physiography concomitant with climatic variability contribute to diverse stream hydrogeomorphologies. Many riparian plant species store their seeds in soil seed banks, and germinate in response to moisture pulses, but the climatic controls of this response are poorly understood. To better understand the

Throughout the Southwest, complex geology and physiography concomitant with climatic variability contribute to diverse stream hydrogeomorphologies. Many riparian plant species store their seeds in soil seed banks, and germinate in response to moisture pulses, but the climatic controls of this response are poorly understood. To better understand the ecological implications of a changing climate on riparian plant communities, I investigated seed bank responses to seasonal temperature patterns and to stream hydrogeomorphic type. I asked the following questions: Are there distinct suites of warm and cool temperature germinating species associated with Southwestern streams; how do they differ between riparian and terrestrial zones, and between ephemeral and perennial streams? How does alpha diversity of the soil seed bank differ between streams with ephemeral, intermittent, and perennial flow, and between montane and basin streams? Do streams with greater elevational change have higher riparian zone seed bank beta-diversity? Does nestedness or turnover contribute more to within stream beta-diversity?

I collected soil samples from the riparian and terrestrial zones of 21 sites, placing them in growth chambers at one of two temperature regimes, and monitoring emergence of seedlings for 12 weeks. Results showed an approximately equal number of warm and cool specialists in both riparian and terrestrials zones; generalists also were abundant, particularly in the riparian zone. The number of temperature specialists and generalists in the riparian zones did not differ significantly between perennial headwater and ephemeral stream types. In montane streams, alpha diversity of the soil seed bank was highest for ephemeral reaches; in basin streams the intermittent and perennial reaches had higher diversity. Spatial turnover was primarily responsible for within stream beta-diversity—reaches had different species assemblages. The large portion of temperature specialists found in riparian seed banks indicates that even with available moisture riparian zone plant community composition will likely be impacted by changing temperatures. However, the presence of so many temperature generalists in the riparian zones suggests that some component of the seed bank is adapted to variable conditions and might offer resilience in a changing climate. Study results confirm the importance of conserving multiple hydrogeomorphic reach types because they support unique species assemblages.
ContributorsSetaro, Danika (Author) / Stromberg, Juliet (Thesis advisor) / Franklin, Janet (Committee member) / Makings, Elizabeth (Committee member) / Arizona State University (Publisher)
Created2016
154019-Thumbnail Image.png
Description

An understanding of the formation of spatial heterogeneity is important because spatial heterogeneity leads to functional consequences at the ecosystem scale; however, such an understanding is still limited. Particularly, research simultaneously considering both external variables and internal feedbacks (self-organization) is rare, partly because these two drivers are addressed under different

An understanding of the formation of spatial heterogeneity is important because spatial heterogeneity leads to functional consequences at the ecosystem scale; however, such an understanding is still limited. Particularly, research simultaneously considering both external variables and internal feedbacks (self-organization) is rare, partly because these two drivers are addressed under different methodological frameworks. In this dissertation, I show the prevalence of internal feedbacks and their interaction with heterogeneity in the preexisting template to form spatial pattern. I use a variety of techniques to account for both the top-down template effect and bottom-up self-organization. Spatial patterns of nutrients in stream surface water are influenced by the self-organized patch configuration originating from the internal feedbacks between nutrient concentration, biological patchiness, and the geomorphic template. Clumps of in-stream macrophyte are shaped by the spatial gradient of water permanence and local self-organization. Additionally, significant biological interactions among plant species also influence macrophyte distribution. The relative contributions of these drivers change in time, responding to the larger external environments or internal processes of ecosystem development. Hydrologic regime alters the effect of geomorphic template and self-organization on in-stream macrophyte distribution. The relative importance of niche vs. neutral processes in shaping biodiversity pattern is a function of hydrology: neutral processes are more important in either very high or very low discharge periods. For the spatial pattern of nutrients, as the ecosystem moves toward late succession and nitrogen becomes more limiting, the effect of self-organization intensifies. Changes in relative importance of different drivers directly affect ecosystem macroscopic properties, such as ecosystem resilience. Stronger internal feedbacks in average to wetter years are shown to increase ecosystem resistance to elevated external stress, and make the backward shifts (vegetation loss) much more gradual. But it causes increases in ecosystem hysteresis effect. Finally, I address the question whether functional consequences of spatial heterogeneity feed back to influence the processes from which spatial heterogeneity emerged through a conceptual review. Such feedbacks are not likely. Self-organized spatial patterning is a result of regular biological processes of organisms. Individual organisms do not benefit from such order. It is order for free, and for nothing.

ContributorsDong, Xiaolin (Author) / Grimm, Nancy (Thesis advisor) / Muneepeerakul, Rachata (Thesis advisor) / Franklin, Janet (Committee member) / Heffernan, James B (Committee member) / Sabo, John (Committee member) / Arizona State University (Publisher)
Created2015