Matching Items (6)
Filtering by

Clear all filters

155984-Thumbnail Image.png
Description
Predicting resistant prostate cancer is critical for lowering medical costs and improving the quality of life of advanced prostate cancer patients. I formulate, compare, and analyze two mathematical models that aim to forecast future levels of prostate-specific antigen (PSA). I accomplish these tasks by employing clinical data of locally advanced

Predicting resistant prostate cancer is critical for lowering medical costs and improving the quality of life of advanced prostate cancer patients. I formulate, compare, and analyze two mathematical models that aim to forecast future levels of prostate-specific antigen (PSA). I accomplish these tasks by employing clinical data of locally advanced prostate cancer patients undergoing androgen deprivation therapy (ADT). I demonstrate that the inverse problem of parameter estimation might be too complicated and simply relying on data fitting can give incorrect conclusions, since there is a large error in parameter values estimated and parameters might be unidentifiable. I provide confidence intervals to give estimate forecasts using data assimilation via an ensemble Kalman Filter. Using the ensemble Kalman Filter, I perform dual estimation of parameters and state variables to test the prediction accuracy of the models. Finally, I present a novel model with time delay and a delay-dependent parameter. I provide a geometric stability result to study the behavior of this model and show that the inclusion of time delay may improve the accuracy of predictions. Also, I demonstrate with clinical data that the inclusion of the delay-dependent parameter facilitates the identification and estimation of parameters.
ContributorsBaez, Javier (Author) / Kuang, Yang (Thesis advisor) / Kostelich, Eric (Committee member) / Crook, Sharon (Committee member) / Gardner, Carl (Committee member) / Nagy, John (Committee member) / Arizona State University (Publisher)
Created2017
156639-Thumbnail Image.png
Description
The most advanced social insects, the eusocial insects, form often large societies in which there is reproductive division of labor, queens and workers, have overlapping generations, and cooperative brood care where daughter workers remain in the nest with their queen mother and care for their siblings. The eusocial insects

The most advanced social insects, the eusocial insects, form often large societies in which there is reproductive division of labor, queens and workers, have overlapping generations, and cooperative brood care where daughter workers remain in the nest with their queen mother and care for their siblings. The eusocial insects are composed of representative species of bees and wasps, and all species of ants and termites. Much is known about their organizational structure, but remains to be discovered.

The success of social insects is dependent upon cooperative behavior and adaptive strategies shaped by natural selection that respond to internal or external conditions. The objective of my research was to investigate specific mechanisms that have helped shaped the structure of division of labor observed in social insect colonies, including age polyethism and nutrition, and phenomena known to increase colony survival such as egg cannibalism. I developed various Ordinary Differential Equation (ODE) models in which I applied dynamical, bifurcation, and sensitivity analysis to carefully study and visualize biological outcomes in social organisms to answer questions regarding the conditions under which a colony can survive. First, I investigated how the population and evolutionary dynamics of egg cannibalism and division of labor can promote colony survival. I then introduced a model of social conflict behavior to study the inclusion of different response functions that explore the benefits of cannibalistic behavior and how it contributes to age polyethism, the change in behavior of workers as they age, and its biological relevance. Finally, I introduced a model to investigate the importance of pollen nutritional status in a honeybee colony, how it affects population growth and influences division of labor within the worker caste. My results first reveal that both cannibalism and division of labor are adaptive strategies that increase the size of the worker population, and therefore, the persistence of the colony. I show the importance of food collection, consumption, and processing rates to promote good colony nutrition leading to the coexistence of brood and adult workers. Lastly, I show how taking into account seasonality for pollen collection improves the prediction of long term consequences.
ContributorsRodríguez Messan, Marisabel (Author) / Kang, Yun (Thesis advisor) / Castillo-Chavez, Carlos (Thesis advisor) / Kuang, Yang (Committee member) / Page Jr., Robert E (Committee member) / Gardner, Carl (Committee member) / Arizona State University (Publisher)
Created2018
135817-Thumbnail Image.png
Description
In 2010, two gamma-ray /x-ray bubbles were detected in the center of the Milky Way Galaxy. These bubbles extend symmetrically ≈ 30, 000 light years above and below the Galactic Center, with a width of ≈ 27, 000 light years. These bubbles emit gamma-rays at energies between 1 and 100

In 2010, two gamma-ray /x-ray bubbles were detected in the center of the Milky Way Galaxy. These bubbles extend symmetrically ≈ 30, 000 light years above and below the Galactic Center, with a width of ≈ 27, 000 light years. These bubbles emit gamma-rays at energies between 1 and 100 giga-electronvolts, have approximately uniform surface brightness, and are expanding at ≈ 30, 000 km/s. We believe that these Fermi Bubbles are the result of an astrophysical jet pulse that occurred millions of years ago. Utilizing high-performance computing and Euler’s Gas Dynamics Equations, we hope to find a realistic simulation that will tell us more about the age of these Fermi Bubbles and better understand the mechanism that powers the bubbles.
ContributorsWagner, Benjamin Leng (Author) / Gardner, Carl (Thesis director) / Jones, Jeremiah (Committee member) / Computing and Informatics Program (Contributor) / Department of Information Systems (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
155092-Thumbnail Image.png
Description
In recent decades, marine ecologists have conducted extensive field work and experiments to understand the interactions between bacteria and bacteriophage (phage) in marine environments. This dissertation provides a detailed rigorous framework for gaining deeper insight into these interactions. Specific features of the dissertation include the design of a new deterministic

In recent decades, marine ecologists have conducted extensive field work and experiments to understand the interactions between bacteria and bacteriophage (phage) in marine environments. This dissertation provides a detailed rigorous framework for gaining deeper insight into these interactions. Specific features of the dissertation include the design of a new deterministic Lotka-Volterra model with n + 1 bacteria, n
+ 1 phage, with explicit nutrient, where the jth phage strain infects the first j bacterial strains, a perfectly nested infection network (NIN). This system is subject to trade-off conditions on the life-history traits of both bacteria and phage given in an earlier study Jover et al. (2013). Sufficient conditions are provided to show that a bacteria-phage community of arbitrary size with NIN can arise through the succession of permanent subcommunities, by the successive addition of one new population. Using uniform persistence theory, this entire community is shown to be permanent (uniformly persistent), meaning that all populations ultimately survive.

It is shown that a modified version of the original NIN Lotka-Volterra model with implicit nutrient considered by Jover et al. (2013) is permanent. A new one-to-one infection network (OIN) is also considered where each bacterium is infected by only one phage, and that phage infects only that bacterium. This model does not use the trade-offs on phage infection range, and bacterium resistance to phage. The OIN model is shown to be permanent, and using Lyapunov function theory, coupled with LaSalle’s Invariance Principle, the unique coexistence equilibrium associated with the NIN is globally asymptotically stable provided that the inter- and intra-specific bacterial competition coefficients are equal across all bacteria.

Finally, the OIN model is extended to a “Kill the Winner” (KtW) Lotka-Volterra model

of marine communities consisting of bacteria, phage, and zooplankton. The zooplankton

acts as a super bacteriophage, which infects all bacteria. This model is shown to be permanent.
ContributorsKorytowski, Daniel (Author) / Smith, Hal (Thesis advisor) / Gumel, Abba (Committee member) / Kuang, Yang (Committee member) / Gardner, Carl (Committee member) / Thieme, Horst (Committee member) / Arizona State University (Publisher)
Created2016
132392-Thumbnail Image.png
Description
This project attempts to create an accurate numerical simulation of the eastern limb of the HH 901 jet in the Mystic Mountain formation located in the Carina Nebula. Using a 3rd order accurate WENO numerical scheme in space, and a 3rd order accurate RK method in time, the temperature, density,

This project attempts to create an accurate numerical simulation of the eastern limb of the HH 901 jet in the Mystic Mountain formation located in the Carina Nebula. Using a 3rd order accurate WENO numerical scheme in space, and a 3rd order accurate RK method in time, the temperature, density, radiative cooling, length, and average jet velocity of this astrophysical phenomenon were simulated based on observations made by Hubble Space Telescope and the work of Reiter and Smith (2013) and (2014). The results of this simulation are displayed in three figures, one each for temperature, radiative cooling, and density, which show a jet displaying morphology consistent with that of the HH 901 eastern limb without adjustment for stellar wind. Also discussed are the effects of different jet speeds, initial conditions, and pulse parameters on the shape and behavior of the simulated jets, as well as continuing work to be done on the simulation to enhance its accuracy and usefulness.
ContributorsKreitzer, Kyle (Author) / Gardner, Carl (Thesis director) / Jones, Jeremiah (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Mechanical and Aerospace Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
165114-Thumbnail Image.png
Description

The purpose of this thesis is to accurately simulate in 3D the HH901 jet in the Mystic Mountain Formation of the Carina Nebula. Astronomers present a narrow-band Wide Field Camera image of Carina and the morphology of some astrophysical jets, including HH901. The simulation attempts to replicate features of the

The purpose of this thesis is to accurately simulate in 3D the HH901 jet in the Mystic Mountain Formation of the Carina Nebula. Astronomers present a narrow-band Wide Field Camera image of Carina and the morphology of some astrophysical jets, including HH901. The simulation attempts to replicate features of the jet, among which are pulses, bow shock, terminal Mach disk, and Kelvin-Helmholtz rollup. We use the gas dynamical equations to solve for density, velocity, and temperature. The numerical methods used to solve the equations are third-order WENO (weighted essentially non-oscillatory) and third-order Runge-Kutta. Graphs of density and radiative cooling demonstrate the effect of adding wind (nonzero ambient velocity). The paper discusses the altering of the ambient velocity and final time to fit the shape of the jet in the Hubble image. The suggested next steps are simulating the other HH901 jet and comparing the jets’ atomic makeups to advance understanding of astrophysical jets.

ContributorsBuyer, Michael (Author) / Gardner, Carl (Thesis director) / Jones, Jeremiah (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2022-05