Matching Items (20)
Filtering by

Clear all filters

152747-Thumbnail Image.png
Description
ABSTRACT The hormone leptin is an important regulator of body weight and energy balance, while nitric oxide (NO) produced in the blood vessels is beneficial for preventing disease-induced impaired vasodilation and hypertension. Elevations in the free radical superoxide can result in impaired vasodilation through scavenging of NO. Omega 3 is

ABSTRACT The hormone leptin is an important regulator of body weight and energy balance, while nitric oxide (NO) produced in the blood vessels is beneficial for preventing disease-induced impaired vasodilation and hypertension. Elevations in the free radical superoxide can result in impaired vasodilation through scavenging of NO. Omega 3 is a polyunsaturated fatty acid that is beneficial at reducing body weight and in lowering many cardiovascular risk factors like atherosclerosis. The present study was designed to examine the change in plasma concentrations of leptin, nitric oxide, and the antioxidant superoxide dismutase in addition to examining the association between leptin and NO in healthy normal weight adult female subjects before and following omega 3 intakes. Participants were randomly assigned to either a fish oil group (600 mg per day) or a control group (1000 mg of coconut oil per day) for 8 weeks. Results showed no significant difference in the percent change of leptin over the 8 week supplementation period for either group (15.3±31.9 for fish oil group, 7.83±27 for control group; p=0.763). The percent change in NO was similarly not significantly altered in either group (-1.97±22 decline in fish oil group, 11.8±53.9 in control group; p=0.960). Likewise, the percent change in superoxide dismutase for each group was not significant following 8 weeks of supplementation (fish oil group: 11.94±20.94; control group: 11.8±53.9; p=0.362). The Pearson correlation co-efficient comparing the percent change of both leptin and NO was r2= -0.251 demonstrating a mildly negative, albeit insignificant, relationship between these factors. Together, these findings suggest that daily supplementation with 600 mg omega 3 in healthy females is not beneficial for improving these cardiovascular risk markers. Future studies in this area should include male subjects as well as overweight subjects with larger doses of fish oil that are equivalent to three or more servings per week. The importance of gender cannot be underestimated since estrogen has protective effects in the vasculature of females that may have masked any further protective effects of the fish oil. In addition, overweight individuals are often leptin-resistant and develop impaired vasodilation resulting from superoxide-mediated scavenging of nitric oxide. Therefore, the reported antioxidant and weight loss properties of omega 3 supplementation may greatly benefit overweight individuals.
ContributorsAlanbagy, Samer (Author) / Sweazea, Karen (Thesis advisor) / Johnston, Carol (Committee member) / Shepard, Christina (Committee member) / Lespron, Christy (Committee member) / Arizona State University (Publisher)
Created2014
153216-Thumbnail Image.png
Description
For animals that experience annual cycles of gonad development, the seasonal timing (phenology) of gonad growth is a major adaptation to local environmental conditions. To optimally time seasonal gonad growth, animals use environmental cues that forecast future conditions. The availability of food is one such environmental cue. Although the importance

For animals that experience annual cycles of gonad development, the seasonal timing (phenology) of gonad growth is a major adaptation to local environmental conditions. To optimally time seasonal gonad growth, animals use environmental cues that forecast future conditions. The availability of food is one such environmental cue. Although the importance of food availability has been appreciated for decades, the physiological mechanisms underlying the modulation of seasonal gonad growth by this environmental factor remain poorly understood.

Urbanization is characterized by profound environmental changes, and urban animals must adjust to an environment vastly different from that of their non-urban conspecifics. Evidence suggests that birds adjust to urban areas by advancing the timing of seasonal breeding and gonad development, compared to their non-urban conspecifics. A leading hypothesis to account for this phenomenon is that food availability is elevated in urban areas, which improves the energetic status of urban birds and enables them to initiate gonad development earlier than their non-urban conspecifics. However, this hypothesis remains largely untested.

My dissertation dovetailed comparative studies and experimental approaches conducted in field and captive settings to examine the physiological mechanisms by which food availability modulates gonad growth and to investigate whether elevated food availability in urban areas advances the phenology of gonad growth in urban birds. My captive study demonstrated that energetic status modulates reproductive hormone secretion, but not gonad growth. By contrast, free-ranging urban and non-urban birds did not differ in energetic status or plasma levels of reproductive hormones either in years in which urban birds had advanced phenology of gonad growth or in a year that had no habitat-related disparity in seasonal gonad growth. Therefore, my dissertation provides no support for the hypothesis that urban birds begin seasonal gonad growth because they are in better energetic status and increase the secretion of reproductive hormones earlier than non-urban birds. My studies do suggest, however, that the phenology of key food items and the endocrine responsiveness of the reproductive system may contribute to habitat-related disparities in the phenology of gonad growth.
ContributorsDavies, Scott (Author) / Deviche, Pierre (Thesis advisor) / Sweazea, Karen (Committee member) / McGraw, Kevin (Committee member) / Orchinik, Miles (Committee member) / Warren, Paige (Committee member) / Arizona State University (Publisher)
Created2014
153350-Thumbnail Image.png
Description
Long term high fat diets (HFD) are correlated with the development of diabetes

and kidney disease. However, the impact of short term high fat intake on the etiology of kidney disease has not been well-studied. Therefore, this study examined the impact of a six week HFD (60% fat) on kidney structure

Long term high fat diets (HFD) are correlated with the development of diabetes

and kidney disease. However, the impact of short term high fat intake on the etiology of kidney disease has not been well-studied. Therefore, this study examined the impact of a six week HFD (60% fat) on kidney structure and function in young male Sprague-Dawley rats. Previous studies have shown that these animals develop indices of diabetes compared to rats fed a standard rodent chow (5% fat) for six weeks. The hypothesis of this study is that six weeks of HFD will lead to early stages of kidney disease as evidenced by morphological and functional changes in the kidney. Alterations in morphology were determined by measuring structural changes in the kidneys (changes in mass, fatty acid infiltration, and structural damage). Alterations in kidney function were measured by analyzing urinary biomarkers of oxidative RNA/DNA damage, renal tissue lipid peroxidation, urinary markers of impaired kidney function (urinary protein, creatinine, and hydrogen peroxide (H2O2)), markers of inflammation (tumor necrosis factor alpha (TNFα) and interleukin 6 (IL-6)), as well as cystatin C, a plasma biomarker of kidney function. The results of these studies determined that short term HFD intake is not sufficient to induce early stage kidney disease. Beyond increases in renal mass, there were no significant differences between the markers of renal structure and function in the HFD and standard rodent chow-fed rats.
ContributorsCrinigan, Catherine (Author) / Sweazea, Karen (Thesis advisor) / Johnston, Carol (Committee member) / Mayol-Kreiser, Sandra (Committee member) / Arizona State University (Publisher)
Created2015
150818-Thumbnail Image.png
Description
While exercising mammalian muscle increasingly relies on carbohydrates for fuel as aerobic exercise intensity rises above the moderate range, flying birds are extraordinary endurance athletes and fuel flight, a moderate-high intensity exercise, almost exclusively with lipid. In addition, Aves have long lifespans compared to weight-matched mammals. As skeletal muscle mitochondria

While exercising mammalian muscle increasingly relies on carbohydrates for fuel as aerobic exercise intensity rises above the moderate range, flying birds are extraordinary endurance athletes and fuel flight, a moderate-high intensity exercise, almost exclusively with lipid. In addition, Aves have long lifespans compared to weight-matched mammals. As skeletal muscle mitochondria account for the majority of oxygen consumption during aerobic exercise, the primary goal was to investigate differences in isolated muscle mitochondria between these species and to examine to what extent factors intrinsic to mitochondria may account for the behavior observed in the intact tissue and whole organism. First, maximal enzyme activities were assessed in sparrow and rat mitochondria. Citrate synthase and aspartate aminotransferase activity were higher in sparrow compared to rat mitochondria, while glutamate dehydrogenase activity was lower. Sparrow mitochondrial NAD-linked isocitrate dehydrogenase activity was dependent on phosphate, unlike the mammalian enzyme. Next, the rate of oxygen consumption (JO), electron transport chain (ETC) activity, and reactive oxygen species (ROS) production were assessed in intact mitochondria. Maximal rates of fat oxidation were lower than for carbohydrate in rat but not sparrow mitochondria. ETC activity was higher in sparrows, but no differences were found in ROS production between species. Finally, fuel selection and control of respiration at three rates between rest and maximum were assessed. Mitochondrial fuel oxidation and selection mirrored that of the whole body; in rat mitochondria the reliance on carbohydrate increased as the rate of oxygen consumption increased, whereas fat dominated under all conditions in the sparrow. These data indicate fuel selection, at least in part, can be modulated at the level of the mitochondrial matrix when multiple substrates are present at saturating levels. As an increase in matrix oxidation-reduction potential has been linked to a suppression of fat oxidation and high ROS production, the high ETC activity relative to dehydrogenase activity in avian compared to mammalian mitochondria may result in lower matrix oxidation-reduction potential, allowing fatty acid oxidation to proceed while also resulting in low ROS production in vivo.
ContributorsKuzmiak, Sarah (Author) / Willis, Wayne T (Thesis advisor) / Mandarino, Lawrence (Committee member) / Sweazea, Karen (Committee member) / Harrison, Jon (Committee member) / Gadau, Juergen (Committee member) / Arizona State University (Publisher)
Created2012
156767-Thumbnail Image.png
Description
Reproduction is energetically costly and seasonal breeding has evolved to capitalize on predictable increases in food availability. The synchronization of breeding with periods of peak food availability is especially important for small birds, most of which do not store an extensive amount of energy. The annual change in photoperiod is

Reproduction is energetically costly and seasonal breeding has evolved to capitalize on predictable increases in food availability. The synchronization of breeding with periods of peak food availability is especially important for small birds, most of which do not store an extensive amount of energy. The annual change in photoperiod is the primary environmental cue regulating reproductive development, but must be integrated with supplementary cues relating to local energetic conditions. Photoperiodic regulation of the reproductive neuroendocrine system is well described in seasonally breeding birds, but the mechanisms that these animals use to integrate supplementary cues remain unclear. I hypothesized that (a) environmental cues that negatively affect energy balance inhibit reproductive development by acting at multiple levels along the reproductive endocrine axis including the hypothalamus (b) that the availability of metabolic fuels conveys alterations in energy balance to the reproductive system. I investigated these hypotheses in male house finches, Haemorhous mexicanus, caught in the wild and brought into captivity. I first experimentally reduced body condition through food restriction and found that gonadal development and function are inhibited and these changes are associated with changes in hypothalamic gonadotropin-releasing hormone (GnRH). I then investigated this neuroendocrine integration and found that finches maintain reproductive flexibility through modifying the release of accumulated GnRH stores in response to energetic conditions. Lastly, I investigated the role of metabolic fuels in coordinating reproductive responses under two different models of negative energy balance, decreased energy intake (food restriction) and increased energy expenditure (high temperatures). Exposure to high temperatures lowered body condition and reduced food intake. Reproductive development was inhibited under both energy challenges, and occurred with decreased gonadal gene expression of enzymes involved in steroid synthesis. Minor changes in fuel utilization occurred under food restriction but not high temperatures. My results support the hypothesis that negative energy balance inhibits reproductive development through multilevel effects on the hypothalamus and gonads. These studies are among the first to demonstrate a negative effect of high temperatures on reproductive development in a wild bird. Overall, the above findings provide important foundations for investigations into adaptive responses of breeding in energetically variable environments.
ContributorsValle, Shelley (Author) / Deviche, Pierre (Thesis advisor) / McGraw, Kevin (Committee member) / Orchinik, Miles (Committee member) / Propper, Catherine (Committee member) / Sweazea, Karen (Committee member) / Arizona State University (Publisher)
Created2018
134744-Thumbnail Image.png
Description
It is presently believed that brown adipose tissue (BAT) is an important tissue in the control of obesity because it has the propensity to increase energy expenditure. The purpose of this study was to attempt to quantify the thermogenesis of BAT when four rats were exposed to a progression of

It is presently believed that brown adipose tissue (BAT) is an important tissue in the control of obesity because it has the propensity to increase energy expenditure. The purpose of this study was to attempt to quantify the thermogenesis of BAT when four rats were exposed to a progression of low-fat to high-fat diet. Exogenous norepinephrine (NE) injections (dose of 0.25 mg/kg i.p.) were administered in order to elicit a temperature response, where increases in temperature indicate increased activity. Temperatures were measured via temperature sensing transponders that had been inserted at the following three sites: interscapular BAT (iBAT), the abdomen (core), and lower back (reference). Data showed increased BAT activity during acute (2-3 weeks) high fat diet (HFD) in comparison to low fat diet (LFD), but a moderate to marked decrease in BAT activity during chronic HFD (6-8 weeks) when compared to acute HFD. This suggests that while a HFD may initially stimulate BAT in the short-term, a long-term HFD diet may have negative effects on BAT activation.
ContributorsSivak, Hanna (Author) / Sweazea, Karen (Thesis director) / Herman, Richard (Committee member) / Caplan, Michael (Committee member) / School of Life Sciences (Contributor) / College of Integrative Sciences and Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
135088-Thumbnail Image.png
Description
The anthracycline drug Doxorubicin (DOX) is a highly effective treatment for breast cancer, but its clinical utility is limited by dose-dependent cardiovascular toxicity. The toxic effects are partly attributed to DOX-induced generation of reactive oxygen species, which may impair nitric oxide-mediated vasodilation. Exercise training activates antioxidant defense mechanisms and is

The anthracycline drug Doxorubicin (DOX) is a highly effective treatment for breast cancer, but its clinical utility is limited by dose-dependent cardiovascular toxicity. The toxic effects are partly attributed to DOX-induced generation of reactive oxygen species, which may impair nitric oxide-mediated vasodilation. Exercise training activates antioxidant defense mechanisms and is thus hypothesized to counteract oxidative stress when initiated prior to DOX administration. Adult 8-week old, ovariectomized female Sprague-Dawley rats were divided into 4 groups: sedentary + vehicle (Sed+Veh); Sed+DOX; exercise + veh (Ex+Veh); and Ex+DOX. Rats in the exercise groups were preconditioned with high intensity interval training consisting of 4x4 minute bouts of exercise at 85-95% of VO2peak separated by 2 minutes of active recovery performed 5 days per week. Exercise was implemented one week prior to the first injection and continued throughout the study. Animals received either DOX (4mg/kg) or veh (saline) intraperitoneal injections bi-weekly for a cumulative dose of 12 mg/kg per animal. Five days following the final injection, animals were anesthetized with isoflurane, decapitated and aortas and perivascular adipose tissue (PVAT) were removed for western blot analyses. No significant differences in aortic protein expression were detected for inducible nitric oxide synthase (iNOS) or the upstream activator of endothelial nitric oxide synthase (eNOS), Akt, across groups (p>0.05), whereas eNOS protein expression was significantly downregulated in Sed+DOX (p=0.003). In contrast, eNOS expression was not altered in Ex+DOX treated animals. Protein expression of iNOS in PVAT was upregulated with exercise in the DOX-treated groups (p=0.039). These findings suggest that exercise preconditioning may help mitigate vascular effects of DOX by preventing downregulation of eNOS in the aorta.
ContributorsO'Neill, Liam Martin (Author) / Sweazea, Karen (Thesis director) / Angadi, Siddhartha (Committee member) / Dickinson, Jared (Committee member) / School of Human Evolution and Social Change (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
155257-Thumbnail Image.png
Description
Birds have shown promise as models of diabetes due to health and longevity despite naturally high plasma glucose concentrations, a condition which in diabetic humans leads to protein glycation and various complications. Research into mechanisms that protect birds from high plasma glucose have shown that some species of birds have

Birds have shown promise as models of diabetes due to health and longevity despite naturally high plasma glucose concentrations, a condition which in diabetic humans leads to protein glycation and various complications. Research into mechanisms that protect birds from high plasma glucose have shown that some species of birds have naturally low levels of protein glycation. Some hypothesize a diet rich in carotenoids and other antioxidants protects birds from protein glycation and oxidative damage. There is little research, however, into the amount of protein glycation in birds of prey, which consume a high protein, high fat diet. No studies have examined the potential link between the diet of carnivorous birds and protein glycation. The overall purpose of this study was to evaluate whether birds of prey have higher protein glycation given their high protein, high fat diet in comparison to chickens, which consume a diet higher in carbohydrates. This was accomplished through analyses of serum samples from select birds of prey (bald eagle, red-tailed hawk, barred owl, great horned owl). Serum samples were obtained from The Raptor Center at the University of Minnesota where the birds of prey consumed high protein, high fat, non-supplemented diets that consisted of small animals and very little to no carbohydrate. Serum was also obtained from one chicken for a control, which consumed a higher carbohydrate and antioxidant-rich diet. Glucose, native albumin glycation and antioxidant concentrations (uric acid, vitamin E, retinol and several carotenoids) of each sample was measured. Statistical analyses showed significant between group differences in percent protein glycation amongst the birds of prey species. Glycation was significantly higher (p < 0.001) in bald eagles (23.67 ± 1.90%) and barred owls (24.28 ± 1.43%) compared to red-tailed hawks (14.31 ± 0.63%). Percent glycation was higher in all birds of prey compared to the chicken sample and literature values for chicken albumin glycation. Levels of the carotenoid lutein were significantly higher in bald eagles and barred owls compared to great horned owls and red-tailed hawks and the carotenoids beta-cryptoxanthin and beta-carotene were significantly greater in bald eagles compared to red-tailed hawks and great horned owls.
ContributorsIngram, Tana (Author) / Sweazea, Karen (Thesis advisor) / Johnston, Carol (Committee member) / Lespron, Christy (Committee member) / Arizona State University (Publisher)
Created2017
148228-Thumbnail Image.png
Description

2D fetal echocardiography (ECHO) can be used for monitoring heart development in utero. This study’s purpose is to empirically model normal fetal heart growth and function changes during development by ECHO and compare these to fetuses diagnosed with and without cardiomyopathy with diabetic mothers. There are existing mathematical models describing

2D fetal echocardiography (ECHO) can be used for monitoring heart development in utero. This study’s purpose is to empirically model normal fetal heart growth and function changes during development by ECHO and compare these to fetuses diagnosed with and without cardiomyopathy with diabetic mothers. There are existing mathematical models describing fetal heart development but they warrant revalidation and adjustment. 377 normal fetuses with healthy mothers, 98 normal fetuses with diabetic mothers, and 37 fetuses with cardiomyopathy and diabetic mothers had their cardiac structural dimensions, cardiothoracic ratio, valve flow velocities, and heart rates measured by fetal ECHO in a retrospective chart review. Cardiac features were fitted to linear functions, with respect to gestational age, femur length, head circumference, and biparietal diameter and z-scores were created to model normal fetal growth for all parameters. These z-scores were used to assess what metrics had no difference in means between the normal fetuses of both healthy and diabetic mothers but differed from those diagnosed with cardiomyopathy. It was found that functional metrics like mitral and tricuspid E wave and pulmonary velocity could be important predictors for cardiomyopathy when fitted by gestational age, femur length, head circumference, and biparietal diameter. Additionally, aortic and tricuspid annulus diameters when fitted to estimated gestational age showed potential to be predictors for fetal cardiomyopathy. While the metrics overlapped over their full range, combining them together may have the potential for predicting cardiomyopathy in utero. Future directions of this study will explore creating a classifier model that can predict cardiomyopathy using the metrics assessed in this study.

ContributorsMishra, Shambhavi (Co-author) / Numani, Asfia (Co-author) / Sweazea, Karen (Thesis director) / Plasencia, Jonathan (Committee member) / Economics Program in CLAS (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148229-Thumbnail Image.png
Description

2D fetal echocardiography (ECHO) can be used for monitoring heart development in utero. This study’s purpose is to empirically model normal fetal heart growth and function changes during development by ECHO and compare these to fetuses diagnosed with and without cardiomyopathy with diabetic mothers. There are existing mathematical models describing

2D fetal echocardiography (ECHO) can be used for monitoring heart development in utero. This study’s purpose is to empirically model normal fetal heart growth and function changes during development by ECHO and compare these to fetuses diagnosed with and without cardiomyopathy with diabetic mothers. There are existing mathematical models describing fetal heart development but they warrant revalidation and adjustment. 377 normal fetuses with healthy mothers, 98 normal fetuses with diabetic mothers, and 37 fetuses with cardiomyopathy and diabetic mothers had their cardiac structural dimensions, cardiothoracic ratio, valve flow velocities, and heart rates measured by fetal ECHO in a retrospective chart review. Cardiac features were fitted to linear functions, with respect to gestational age, femur length, head circumference, and biparietal diameter and z-scores were created to model normal fetal growth for all parameters. These z-scores were used to assess what metrics had no difference in means between the normal fetuses of both healthy and diabetic mothers, but differed from those diagnosed with cardiomyopathy. It was found that functional metrics like mitral and tricuspid E wave and pulmonary velocity could be important predictors for cardiomyopathy when fitted by gestational age, femur length, head circumference, and biparietal diameter. Additionally, aortic and tricuspid annulus diameters when fitted to estimated gestational age showed potential to be predictors for fetal cardiomyopathy. While the metrics overlapped over their full range, combining them together may have the potential for predicting cardiomyopathy in utero. Future directions of this study will explore creating a classifier model that can predict cardiomyopathy using the metrics assessed in this study.

ContributorsNumani, Asfia (Co-author) / Mishra, Shambhavi (Co-author) / Sweazea, Karen (Thesis director) / Plasencia, Jon (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05