Matching Items (103)
Filtering by

Clear all filters

148049-Thumbnail Image.png
Description

Cancer rates vary between people, between cultures, and between tissue types, driven by clinically relevant distinctions in the risk factors that lead to different cancer types. Despite the importance of cancer location in human health, little is known about tissue-specific cancers in non-human animals. We can gain significant insight into

Cancer rates vary between people, between cultures, and between tissue types, driven by clinically relevant distinctions in the risk factors that lead to different cancer types. Despite the importance of cancer location in human health, little is known about tissue-specific cancers in non-human animals. We can gain significant insight into how evolutionary history has shaped mechanisms of cancer suppression by examining how life history traits impact cancer susceptibility across species. Here, we perform multi-level analysis to test how species-level life history strategies are associated with differences in neoplasia prevalence, and apply this to mammary neoplasia within mammals. We propose that the same patterns of cancer prevalence that have been reported across species will be maintained at the tissue-specific level. We used a combination of factor analysis and phylogenetic regression on 13 life history traits across 90 mammalian species to determine the correlation between a life history trait and how it relates to mammary neoplasia prevalence. The factor analysis presented ways to calculate quantifiable underlying factors that contribute to covariance of entangled life history variables. A greater risk of mammary neoplasia was found to be correlated most significantly with shorter gestation length. With this analysis, a framework is provided for how different life history modalities can influence cancer vulnerability. Additionally, statistical methods developed for this project present a framework for future comparative oncology studies and have the potential for many diverse applications.

ContributorsFox, Morgan Shane (Author) / Maley, Carlo C. (Thesis director) / Boddy, Amy (Committee member) / Compton, Zachary (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / School of Molecular Sciences (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148071-Thumbnail Image.png
Description

Hundreds of thousands of people die annually from malaria; a protozoan of the genus Plasmodium is responsible for this mortality. The Plasmodium parasite undergoes several life stages within the mosquito vector, the transition between which require passage across the lumen of the mosquito midgut. It has been observed that in

Hundreds of thousands of people die annually from malaria; a protozoan of the genus Plasmodium is responsible for this mortality. The Plasmodium parasite undergoes several life stages within the mosquito vector, the transition between which require passage across the lumen of the mosquito midgut. It has been observed that in about 15% of parasites that develop ookinetes in the mosquito abdomen, sporozoites never develop in the salivary glands, indicating that passage across the midgut lumen is a significant barrier in parasite development (Gamage-Mendis et al., 1993). We aim to investigate a possible correlation between passage through the midgut lumen and drug-resistance trends in Plasmodium falciparum parasites. This study contains a total of 1024 Anopheles mosquitoes: 187 Anopheles gambiae and 837 Anopheles funestus samples collected in high malaria transmission areas of Mozambique between March and June of 2016. Sanger sequencing will be used to determine the prevalence of known resistance alleles for anti-malarial drugs: chloroquine resistance transporter (pfcrt), multidrug resistance (pfmdr1) gene, dihydropteroate synthase (pfdhps) and dihydrofolate reductase (pfdhfr). We compare prevalence of resistance between abdomen and head/thorax in order to determine whether drug resistant parasites are disproportionately hindered during their passage through the midgut lumen. A statistically significant difference between resistance alleles in the two studied body sections supports the efficacy of new anti-malarial gene surveillance strategies in areas of high malaria transmission.

ContributorsPhillips, Keeley Isabella (Author) / Huijben, Silvie (Thesis director) / Gile, Gillian (Committee member) / Young, Steven (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
137704-Thumbnail Image.png
Description
Cardiovascular disease is one of the most deadly outcomes of end stage renal disease. Bioelectrical impedance is a intriguing, yet unproven method of measuring fluid buildup in the heart, and is marketed as a early diagnostic tool for onset of cardiovascular disease. In this study, selenium supplements were given to

Cardiovascular disease is one of the most deadly outcomes of end stage renal disease. Bioelectrical impedance is a intriguing, yet unproven method of measuring fluid buildup in the heart, and is marketed as a early diagnostic tool for onset of cardiovascular disease. In this study, selenium supplements were given to a cohort of dialysis patients in the Phoenix metro area and their fluid tolerance was measured with thoracic biolectrical impedance. BNP was used as a correlate to see if bioelectrical impedance was correlated with heart disease. The study found no correlation between BNP and bioelectrical impedance and thus was not an accurate diagnostic tool in a medical setting.
ContributorsBrown, Patrick Michael (Author) / Johnston, Carol (Thesis director) / Orchinik, Miles (Committee member) / Tingey, Michael (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / School of Historical, Philosophical and Religious Studies (Contributor)
Created2013-05
137211-Thumbnail Image.png
Description
Ephemeral and intermittent streams are valuable sources of surface water support in the arid ecosystems of the Southwestern United States. These streams account for over 80% of the streams in the American Southwest and their importance has been indicated in many studies. Ephemeral and intermittent streams support a wide range

Ephemeral and intermittent streams are valuable sources of surface water support in the arid ecosystems of the Southwestern United States. These streams account for over 80% of the streams in the American Southwest and their importance has been indicated in many studies. Ephemeral and intermittent streams support a wide range of plant and animal species in both continuous and episodic fashions. This study aimed to gain a better understanding of the relationship between streamflow permanence and patterns of biomass and secondary production of the riparian fauna these ecosystems support. This was accomplished through a yearlong survey in the Huachuca Mountains of Southeastern, Arizona where macroinvertebrates were collected at various sites along a gradient of streamflow permanence before, during, and after the three month monsoon season that supplies most of the annual rainfall in this region. The results of my surveys indicate that 1) Sites characterized by low streamflow permanence were more responsive to changes in precipitation than sites characterized by relatively high streamflow permanence 2) In ephemeral streams, there is a significant peak in terrestrial macroinvertebrate production and biomass both during and after the monsoon season 3) streamflow permanence may convey consistent but not exceptional secondary production whereas seasonality in rainfall may convey exceptional but episodic secondary production—more so in sites where streamflow is not consistent.
ContributorsMcCartin, Michael Patrick (Author) / Sabo, John (Thesis director) / Stromberg, Juliet (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2014-05
136395-Thumbnail Image.png
Description
We examined the evolutionary morphological responses of Drosophila melanogaster that had evolved at constant cold (16°), constant hot (25°C), and fluctuating (16° and 25°C). Flies that were exposed to the constant low mean temperature developed larger thorax, wing, and cell sizes than those exposed to constant high mean temperatures. Males

We examined the evolutionary morphological responses of Drosophila melanogaster that had evolved at constant cold (16°), constant hot (25°C), and fluctuating (16° and 25°C). Flies that were exposed to the constant low mean temperature developed larger thorax, wing, and cell sizes than those exposed to constant high mean temperatures. Males and females both responded similarly to thermal treatments in average wing and cell size. The resulting cell area for a given wing size in thermal fluctuating populations remains unclear and remains a subject for future research.
ContributorsAdrian, Gregory John (Author) / Angilletta, Michael (Thesis director) / Harrison, Jon (Committee member) / Rusch, Travis (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2015-05
147559-Thumbnail Image.png
Description

Studies of animal contests often focus solely on a single static measurement of fighting ability, such as the size or the strength of the individual. However, recent studies have highlighted the importance of individual variation in the dynamic behaviors used during a fight, such as, assessment strategies, decision making, and

Studies of animal contests often focus solely on a single static measurement of fighting ability, such as the size or the strength of the individual. However, recent studies have highlighted the importance of individual variation in the dynamic behaviors used during a fight, such as, assessment strategies, decision making, and fine motor control, as being strong predictors of the outcome of aggression. Here, I combined morphological and behavioral data to discover how these features interact during aggressing interactions in male virile crayfish, Faxonius virilis. I predicted that individual variation in behavioral skill for decision making (i.e., number of strikes thrown), would determine the outcome of contest success in addition to morphological measurements (e.g. body size, relative claw size). To evaluate this prediction, I filmed staged territorial interactions between male F. virilis and later analyzed trial behaviors (e.g. strike, pinches, and bout time) and aggressive outcomes. I found very little support for skill to predict win/loss outcome in trials. Instead, I found that larger crayfish engaged in aggression for longer compared to smaller crayfish, but that larger crayfish did not engage in a greater number of claw strikes or pinches when controlling for encounter duration. Future studies should continue to investigate the role of skill, by using finer-scale techniques such as 3D tracking software, which could track advanced measurements (e.g. speed, angle, and movement efficiency). Such studies would provide a more comprehensive understanding of the relative influence of fighting skill technique on territorial contests.

ContributorsNguyen, Phillip Huy (Author) / Angilletta, Michael (Thesis director) / McGraw, Kevin (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
152411-Thumbnail Image.png
Description
Mathematical modeling of infectious diseases can help public health officials to make decisions related to the mitigation of epidemic outbreaks. However, over or under estimations of the morbidity of any infectious disease can be problematic. Therefore, public health officials can always make use of better models to study the potential

Mathematical modeling of infectious diseases can help public health officials to make decisions related to the mitigation of epidemic outbreaks. However, over or under estimations of the morbidity of any infectious disease can be problematic. Therefore, public health officials can always make use of better models to study the potential implication of their decisions and strategies prior to their implementation. Previous work focuses on the mechanisms underlying the different epidemic waves observed in Mexico during the novel swine origin influenza H1N1 pandemic of 2009 and showed extensions of classical models in epidemiology by adding temporal variations in different parameters that are likely to change during the time course of an epidemic, such as, the influence of media, social distancing, school closures, and how vaccination policies may affect different aspects of the dynamics of an epidemic. This current work further examines the influence of different factors considering the randomness of events by adding stochastic processes to meta-population models. I present three different approaches to compare different stochastic methods by considering discrete and continuous time. For the continuous time stochastic modeling approach I consider the continuous-time Markov chain process using forward Kolmogorov equations, for the discrete time stochastic modeling I consider stochastic differential equations using Wiener's increment and Poisson point increments, and also I consider the discrete-time Markov chain process. These first two stochastic modeling approaches will be presented in a one city and two city epidemic models using, as a base, our deterministic model. The last one will be discussed briefly on a one city SIS and SIR-type model.
ContributorsCruz-Aponte, Maytee (Author) / Wirkus, Stephen A. (Thesis advisor) / Castillo-Chavez, Carlos (Thesis advisor) / Camacho, Erika T. (Committee member) / Kang, Yun (Committee member) / Arizona State University (Publisher)
Created2014
148139-Thumbnail Image.png
Description

One of the largest problems facing modern medicine is drug resistance. Many classes of drugs can be rendered ineffective if their target is able to acquire beneficial mutations. While this is an excellent showcase of the power of evolution, it necessitates the development of increasingly stronger drugs to combat resistant

One of the largest problems facing modern medicine is drug resistance. Many classes of drugs can be rendered ineffective if their target is able to acquire beneficial mutations. While this is an excellent showcase of the power of evolution, it necessitates the development of increasingly stronger drugs to combat resistant pathogens. Not only is this strategy costly and time consuming, it is also unsustainable. To contend with this problem, many multi-drug treatment strategies are being explored. Previous studies have shown that resistance to some drug combinations is not possible, for example, resistance to a common antifungal drug, fluconazole, seems impossible in the presence of radicicol. We believe that in order to understand the viability of multi-drug strategies in combating drug resistance, we must understand the full spectrum of resistance mutations that an organism can develop, not just the most common ones. It is possible that rare mutations exist that are resistant to both drugs. Knowing the frequency of such mutations is important for making predictions about how problematic they will be when multi-drug strategies are used to treat human disease. This experiment aims to expand on previous research on the evolution of drug resistance in S. cerevisiae by using molecular barcodes to track ~100,000 evolving lineages simultaneously. The barcoded cells were evolved with serial transfers for seven weeks (200 generations) in three concentrations of the antifungal Fluconazole, three concentrations of the Hsp90 inhibitor Radicicol, and in four combinations of Fluconazole and Radicicol. Sequencing data was used to track barcode frequencies over the course of the evolution, allowing us to observe resistant lineages as they rise and quantify differences in resistance evolution across the different conditions. We were able to successfully observe over 100,000 replicates simultaneously, revealing many adaptive lineages in all conditions. Our results also show clear differences across drug concentrations and combinations, with the highest drug concentrations exhibiting distinct behaviors.

ContributorsApodaca, Samuel (Author) / Geiler-Samerotte, Kerry (Thesis director) / Schmidlin, Kara (Committee member) / Huijben, Silvie (Committee member) / School of Life Sciences (Contributor) / School of Molecular Sciences (Contributor) / School of Politics and Global Studies (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
136542-Thumbnail Image.png
Description
Introduction: Human papillomavirus (HPV) infection is seen in up to 90% of cases of cervical cancer, the third leading cancer cause of death in women. Current HPV screening focuses on only two HPV types and covers roughly 75% of HPV-associated cervical cancers. A protein based assay to test for antibody

Introduction: Human papillomavirus (HPV) infection is seen in up to 90% of cases of cervical cancer, the third leading cancer cause of death in women. Current HPV screening focuses on only two HPV types and covers roughly 75% of HPV-associated cervical cancers. A protein based assay to test for antibody biomarkers against 98 HPV antigens from both high and low risk types could provide an inexpensive and reliable method to screen for patients at risk of developing invasive cervical cancer. Methods: 98 codon optimized, commercially produced HPV genes were cloned into the pANT7_cGST vector, amplified in a bacterial host, and purified for mammalian expression using in vitro transcription/translation (IVTT) in a luminescence-based RAPID ELISA (RELISA) assay. Monoclonal antibodies were used to determine immune cross-reactivity between phylogenetically similar antigens. Lastly, several protein characteristics were examined to determine if they correlated with protein expression. Results: All genes were successfully moved into the destination vector and 86 of the 98 genes (88%) expressed protein at an adequate level. A difference was noted in expression by gene across HPV types but no correlation was found between protein size, pI, or aliphatic index and expression. Discussion: Further testing is needed to express the remaining 12 HPV genes. Once all genes have been successfully expressed and purified at high concentrations, DNA will be printed on microscope slides to create a protein microarray. This microarray will be used to screen HPV-positive patient sera for antibody biomarkers that may be indicative of cervical cancer and precancerous cervical neoplasias.
ContributorsMeshay, Ian Matthew (Author) / Anderson, Karen (Thesis director) / Magee, Mitch (Committee member) / Katchman, Benjamin (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2015-05
135568-Thumbnail Image.png
Description
Triops (Branchiopoda: Notostraca) and Streptocephalus (Branchiopoda: Anostraca) are two crustaceans which cohabitate in ephemeral freshwater pools. They both lay desiccation resistant eggs that disperse passively to new hydrologically isolated environments. The extent of genetic distance among regions and populations is of perennial interest in animals that live in such isolated

Triops (Branchiopoda: Notostraca) and Streptocephalus (Branchiopoda: Anostraca) are two crustaceans which cohabitate in ephemeral freshwater pools. They both lay desiccation resistant eggs that disperse passively to new hydrologically isolated environments. The extent of genetic distance among regions and populations is of perennial interest in animals that live in such isolated habitats. Populations in six natural ephemeral pool habitats located in two different regions of the Sonoran Desert and a transition area between the Sonoran and Chihuahuan Deserts were sampled. Sequences from Genbank were used for reference points in the determination of species as well as to further identify regional genetic distance within species. This study estimated the amount of within and between genetic distance of individuals from each region and population through the use of a neutral marker, cytochrome oxidase I (COI). We concluded that, although the method of passive dispersal may differ between the two genera, the differences do not results in different patterns of genetic distances between regions and populations. Furthermore, we only found the putative species, Triops longicaudatus "short", with enough distinct speciation. Although Triops longicaudatus "long" and Triops newberryi may be in the early stages of speciation, this study does not find enough support to conclude that they have separated.
ContributorsMurphy Jr., Patrick Joseph (Author) / Rutowski, Ronald (Thesis director) / Cartwright, Reed (Committee member) / Lessios, Nikos (Committee member) / School of Life Sciences (Contributor) / School of Human Evolution and Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05