Matching Items (47)
Filtering by

Clear all filters

171815-Thumbnail Image.png
Description
Advanced fibrous composite materials exhibit outstanding thermomechanical performance under extreme environments, which make them ideal for structural components that are used in a wide range of aerospace, nuclear, and defense applications. The integrity and residual useful life of these components, however, are strongly influenced by their inherent material flaws and

Advanced fibrous composite materials exhibit outstanding thermomechanical performance under extreme environments, which make them ideal for structural components that are used in a wide range of aerospace, nuclear, and defense applications. The integrity and residual useful life of these components, however, are strongly influenced by their inherent material flaws and defects resulting from the complex fabrication processes. These defects exist across multiple length scales and govern several scale-dependent inelastic deformation mechanisms of each of the constituents as well as their composite damage anisotropy. Tailoring structural components for optimal performance requires addressing the knowledge gap regarding the microstructural material morphology that governs the structural scale damage and failure response. Therefore, there is a need for a high-fidelity multiscale modeling framework and scale-specific in-situ experimental characterization that can capture complex inelastic mechanisms, including damage initiation and propagation across multiple length scales. This dissertation presents a novel multiscale computational framework that accounts for experimental information pertinent to microstructure morphology and architectural variabilities to investigate the response of ceramic matrix composites (CMCs) with manufacturing-induced defects. First, a three-dimensional orthotropic viscoplasticity creep formulation is developed to capture the complex temperature- and time-dependent constituent load transfer mechanisms in different CMC material systems. The framework also accounts for a reformulated fracture mechanics-informed matrix damage model and the Curtin progressive fiber damage model to capture the complex scale-dependent damage and failure mechanisms through crack kinetics and porosity growth. Next, in-situ experiments using digital image correlation (DIC) are performed to capture the damage and failure mechanisms in CMCs and to validate the high-fidelity modeling results. The dissertation also presents an exhaustive experimental investigation into the effects of temperature and manufacturing-induced defects on toughened epoxy adhesives and hybrid composite-metallic bonded joints. Nondestructive evaluation techniques are utilized to characterize the inherent defects morphology of the bulk adhesives and bonded interface. This is followed by quasi-static tensile tests conducted at extreme hot and cold temperature conditions. The damage mechanisms and failure modes are investigated using in-situ DIC and a high-resolution camera. The information from the morphology characterization studies is used to reconstruct high-fidelity geometries of the test specimens for finite element analysis.
ContributorsKhafagy, Khaled Hassan Abdo (Author) / Chattopadhyay, Aditi (Thesis advisor) / Fard, Masoud Y. (Committee member) / Milcarek, Ryan (Committee member) / Stoumbos, Tom (Committee member) / Borkowski, Luke (Committee member) / Arizona State University (Publisher)
Created2022
171388-Thumbnail Image.png
Description
Thermal management of electronics is critical to meet the increasing demand for high power and performance. Thermal interface materials (TIMs) play a key role in dissipating heat away from the microelectronic chip and hence are a crucial component in electronics cooling. Challenges persist with overcoming the interfacial boundary resistance and

Thermal management of electronics is critical to meet the increasing demand for high power and performance. Thermal interface materials (TIMs) play a key role in dissipating heat away from the microelectronic chip and hence are a crucial component in electronics cooling. Challenges persist with overcoming the interfacial boundary resistance and filler particle connectivity in TIMs to achieve thermal percolation while maintaining mechanical compliance. Gallium-based liquid metal (LM) capsules offer a unique set of thermal-mechanical characteristics that make them suitable candidates for high-performance TIM fillers. This dissertation research focuses on resolving the fundamental challenges posed by integration of LM fillers in polymer matrix. First, the rupture mechanics of LM capsules under pressure is identified as a key factor that dictates the thermal connectivity between LM-based fillers. This mechanism of oxide “popping” in LM particle beds independent of the matrix material provides insights in overcoming the particle-particle connectivity challenges. Second, the physical barrier introduced due to the polymer matrix needs to be overcome to achieve thermal percolation. Matrix fluid viscosity impacts thermal transport, with high viscosity uncured matrix inhibiting the thermal bridging of fillers. In addition, incorporation of solid metal co-fillers that react with LM fillers is adopted to facilitate popping of LM oxide in uncured polymer to overcome this matrix barrier. Solid silver metal additives are used to rupture the LM oxide, form inter-metallic alloy (IMC), and act as thermal anchors within the matrix. This results in the formation of numerous thermal percolation paths and hence enhances heat transport within the composite. Further, preserving this microstructure of interconnected multiphase filler system with thermally conductive percolation pathways in a cured polymer matrix is critical to designing high-performing TIM pads. Viscosity of the precursor polymer solution prior to curing plays a major role in the resulting thermal conductivity. A multipronged strategy is developed that synergistically combines reactive solid and liquid fillers, a polymer matrix with low pre-cure viscosity, and mechanical compression during thermal curing. The results of this dissertation aim to provide fundamental insights into the integration of LMs in polymer composites and give design knobs to develop high thermally conducting soft composites.
ContributorsUppal, Aastha (Author) / Rykaczewski, Konrad (Thesis advisor) / Wang, Robert (Thesis advisor) / Kwon, Beomjin (Committee member) / Choksi, Gaurang (Committee member) / Phelan, Patrick (Committee member) / Arizona State University (Publisher)
Created2022
Description

This paper explores to mitigate the issue of Formula SAE brakes vaporizing by creating a computational model to determine when the fluid may boil given a velocity profile and brake geometry. The paper explores various parameters and assumptions and how they may lead to error determining when the brake fluid

This paper explores to mitigate the issue of Formula SAE brakes vaporizing by creating a computational model to determine when the fluid may boil given a velocity profile and brake geometry. The paper explores various parameters and assumptions and how they may lead to error determining when the brake fluid will vaporize. Common assumptions such as a constant convection coefficient are questioned throughout the paper and compared to methods requiring higher computational power. Throughout this model, a significant dependence on the heat partition factor is found on the final steady state temperature of the brake fluid is found, and a sensitivity analysis is performed to determine the effect of its variation.

ContributorsWesterhoff, Andrew (Author) / Kwon, Beomjin (Thesis director) / Milcarek, Ryan (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2023-05
187787-Thumbnail Image.png
Description
Human exposure to extreme heat is becoming more prevalent due to increasing urbanization and changing climate. In many extreme heat conditions, thermal radiation (from solar to emitted by the surrounding) is a significant contributor to heating the body, among other modes of heat transfer. Therefore, accurately measuring radiative heat

Human exposure to extreme heat is becoming more prevalent due to increasing urbanization and changing climate. In many extreme heat conditions, thermal radiation (from solar to emitted by the surrounding) is a significant contributor to heating the body, among other modes of heat transfer. Therefore, accurately measuring radiative heat flux on a human body is becoming increasingly important for calculating human thermal comfort and heat safety in extreme conditions. Most often, radiant heat exchange between the human body and surroundings is quantified using mean radiant temperature, T_mrt. This value is commonly measured using globe or cylindrical radiometers. It is based on radiation absorbed by the surface of the radiometer, which can be calculated using a surface energy balance involving both convection and emitted radiation at steady state. This convection must be accounted for and is accomplished using a traditional heat transfer coefficient correlation with measured wind speed. However, the utilized correlations are based on wind tunnel measurements and do not account for any turbulence present in the air. The latter can even double the heat transfer coefficient, so not accounting for it can introduce major errors in T_mrt. This Thesis focuses on the development, and testing of a cost-effective heated cylinder to directly measure the convection heat transfer coefficient in field conditions, which can be used for accounting convection in measuring T_mrt using a cylindrical radiometer. An Aluminum cylinder of similar dimensions as that of a cylindrical radiometer was heated using strip heaters, and the surface temperature readings were recorded to estimate the convection heat transfer coefficient, h. Various tests were conducted to test this concept. It was observed that heated cylinders take significantly less time to reach a steady state and respond to velocity change quicker than existing regular-sized globe thermometers. It was also shown that, for accurate estimation of h, it is required to measure the outer surface temperature than the center temperature. Furthermore, the value calculated matches well in range with classic correlations that include velocity, showing proof of concept.
ContributorsGuddanti, Sai Susmitha (Author) / Rykaczewski, Konrad (Thesis advisor) / Vanos, Jennifer (Committee member) / Wang, Robert (Committee member) / Burke, Richard (Committee member) / Arizona State University (Publisher)
Created2023
193469-Thumbnail Image.png
Description
The microelectronics industry is actively focusing on advanced packaging technologies, notably on three-dimensional stacking of heterogeneous integrated (3D-HI) circuits for enhanced performance. Despite its computational performance benefits, this approach faces challenges in thermal management due to increased power density and heat generation. Conventional cooling methods struggle to address this issue

The microelectronics industry is actively focusing on advanced packaging technologies, notably on three-dimensional stacking of heterogeneous integrated (3D-HI) circuits for enhanced performance. Despite its computational performance benefits, this approach faces challenges in thermal management due to increased power density and heat generation. Conventional cooling methods struggle to address this issue effectively. This study investigates microfluidic intralayer cooling techniques using analytical correlation and computational fluid dynamics (CFD) principles to propose a method capable of managing thermal performance across varying load conditions. The proposed configuration achieved a dissipation of 40 W/cm2 with a volumetric flow rate of 200 mL/min, maintaining chip temperature at 315K. Additionally, extreme hotspot conditions generating 1kW/cm2, along with the presence of thermal resistance from redistribution layers (RDLs), are analyzed. This research aims to establish a model for understanding geometric property variations under different heat flux conditions in 3D heterogeneous integration of semiconductor packaging.
ContributorsGandhi, Rohit Mahavir (Author) / Wang, Robert Y (Thesis advisor) / Rykaczewski, Konrad (Committee member) / Kwon, Beomjin (Committee member) / Arizona State University (Publisher)
Created2024
193493-Thumbnail Image.png
Description
According to Our World in Data, the industry sector contributes approximately 5.2 percent of the world's greenhouse gas emissions in 2016 [1]. Of that percentage, the cement industry contributes approximately 3 percent, thus accounting for more than 57 percent of all greenhouse gas emissions within the industry sector. Industrial-scale heating

According to Our World in Data, the industry sector contributes approximately 5.2 percent of the world's greenhouse gas emissions in 2016 [1]. Of that percentage, the cement industry contributes approximately 3 percent, thus accounting for more than 57 percent of all greenhouse gas emissions within the industry sector. Industrial-scale heating that is powered by renewable energy sources has the potential to combat this issue. This paper aims to analyze and model the Reverse Brayton Cycle to be used as a heat pump in a novel cement production system. The Simple Reverse Brayton Cycle and its potential concerning performance indicators such as coefficient of performance and scalability are determined. A Regenerative Brayton cycle is modeled in MATLAB® programming in order to be optimized and compared to conventional processes that require higher temperatures. Traditional manufacturing methods are discussed. Furthermore, possible methods of improvement are explored to view its effect on performance and temperatures between stages within the cycle.
ContributorsRivera, Daniel E (Author) / Phelan, Patrick (Thesis advisor) / Milcarek, Ryan (Committee member) / Calhoun, Ronald (Committee member) / Arizona State University (Publisher)
Created2024
187629-Thumbnail Image.png
Description
Solid Oxide Fuel Cells (SOFCs) generate electricity using only hydrogen and oxygen and they form H2O as the only byproduct, giving them the potential to significantly reduce carbon emissions and the impacts of global warming. In order to meet the global power demands today, SOFCs need to significantly increase their

Solid Oxide Fuel Cells (SOFCs) generate electricity using only hydrogen and oxygen and they form H2O as the only byproduct, giving them the potential to significantly reduce carbon emissions and the impacts of global warming. In order to meet the global power demands today, SOFCs need to significantly increase their power density and improve robustness in startup and cycling operations. This study explores the impact of decreasing the anode thickness to improve the mass transport of the fuel through the anode of a micro-tubular (mT) SOFC because few studies have reported the correlation between the two. Decreasing the thickness decreases the chance for concentration overpotential which is caused by not enough of the reactants being able to reach the reaction site while products are not able to be removed quickly enough. Experiments were performed in a split tube furnace heated to 750°C with nickel-yttria stabilized zirconia (Ni-YSZ) supported cells. Pure hydrogen was supplied to the cell at rates of 10, 20, 30, and 40 mL/min while the cathode was supplied air from the environment. The cell's performance was studied using the current-voltage method to generate polarization curves and electrochemical impedance spectroscopy to create Bode and Nyquist plots. The results from the electrochemical impedance spectroscopy show a lower impedance for the frequencies pertaining to the gas diffusion in the anode for the thinner cells. This suggests that decreasing the anode thickness increases the mass transport of the gas. Additionally, through a distribution of relaxation times (DRT) analysis, the peaks vary between the two cell thicknesses at the frequencies pertaining to gas diffusion in anode-supported cells, implicating the decreased resistance created by thinning the anode layer.
ContributorsPhillips, Kristina (Author) / Milcarek, Ryan (Thesis advisor) / Wang, Robert (Committee member) / Phelan, Patrick (Committee member) / Arizona State University (Publisher)
Created2023
187476-Thumbnail Image.png
Description
Gallium based room-temperature liquid metals (LMs) have special properties such as metal-like high thermal conductivity while in the liquid state. They are suitable for many potential applications, including thermal interface materials, soft robotics, stretchable electronics, and biomedicine. However, their high density, high surface tension, high reactivity with other metals, and

Gallium based room-temperature liquid metals (LMs) have special properties such as metal-like high thermal conductivity while in the liquid state. They are suitable for many potential applications, including thermal interface materials, soft robotics, stretchable electronics, and biomedicine. However, their high density, high surface tension, high reactivity with other metals, and rapid oxidation restrict their applicability. This dissertation introduces two new types of materials, LM foams, and LM emulsions, that address many of these issues. The formation mechanisms, thermophysical properties, and example applications of the LM foams and emulsions are investigated.LM foams can be prepared by shear mixing the bulk LM in air using an impeller. The surface oxide layer is sheared and internalized into the bulk LM as crumpled oxide flakes during this process. After a critical amount of oxide flakes is internalized, they start to stabilize air bubbles by encapsulating and oxide-bridging. This mechanism enables the fabrication of a LM foam with improved properties and better spreadability. LM emulsions can be prepared by mixing the LM foam with a secondary liquid such as silicone oil (SO). By tuning a few factors such as viscosity of the secondary liquid, composition, and mixing duration, the thermophysical properties of the emulsion can be controlled. These emulsions have a lower density, better spreadability, and unlike the original LM and LM foam, they do not induce corrosion of other metals. LM emulsions can form by two possible mechanisms, first by the secondary liquid replacing air features in the existing foam pores (replacement mechanism) and second by creating additional liquid features within the LM foam (addition mechanism). The latter mechanism requires significant oxide growth and therefore requires presence of oxygen in the environment. The dominant mechanism can therefore be distinguished by mixing LM foam with the SO in air and oxygen-free environments. Additionally, a comprehensive analysis of foam-to-emulsion density change, multiscale imaging and surface wettability confirm that addition mechanism dominates the emulsion formation. These results provide insight into fundamental processes underlying LM foams and emulsions, and they set up a foundation for preparing LM emulsions with a wide range of fluids and controllable properties.
ContributorsShah, Najam Ul Hassan (Author) / Rykaczewski, Konrad (Thesis advisor) / Wang, Robert (Thesis advisor) / Phelan, Patrick (Committee member) / Green, Matthew D. (Committee member) / Kwon, Beomjin (Committee member) / Arizona State University (Publisher)
Created2023
193429-Thumbnail Image.png
Description
This study investigates the energy saving potential of high albedo roof coatings which are designed to reflect a large proportion of solar radiation compared to traditional roofing materials. Using EnergyPlus simulations, the efficacy of silicone, acrylic, and aluminum roof coatings is assessed across two prototype commercial buildings—a standalone retail (2,294

This study investigates the energy saving potential of high albedo roof coatings which are designed to reflect a large proportion of solar radiation compared to traditional roofing materials. Using EnergyPlus simulations, the efficacy of silicone, acrylic, and aluminum roof coatings is assessed across two prototype commercial buildings—a standalone retail (2,294 m2 or 24,692 ft2) and a strip-mall (2,090 m2 or 22,500 ft2)—located in four cities: Phoenix, Houston, Los Angeles, and Miami. The performance of reflective coatings was compared with respect to a black roof having a solar reflectance of 5% and a thermal emittance of 90%. A sensitivity analysis was done to assess the impact of solar reflectance and thermal emittance on the ability of roof coatings to reduce surface temperatures, a key factor behind energy savings. This factor plays a crucial role in all three heat transfer mechanisms: conduction, convection, and radiation. The rooftop surface temperature exhibits considerable variation depending on the solar reflectance and thermal emittance attributes of the roof. A contour plot between these properties reveals that high values of both result in reduced cooling needs and a heating penalty which is insignificant when compared with cooling savings for cooling-dominant climates like Phoenix where the cooling demand significantly outweighs the heating demand, yielding significant energy savings. Furthermore, the study also investigates the effects of reflective coatings on buildings that have photovoltaic solar panels installed on them. This includes exploring their impact on building HVAC loads, as well as the performance improvement due to the reduced temperatures beneath them.
ContributorsSharma, Ajay Kumar (Author) / Phelan, Patrick (Thesis advisor) / Neithalath, Narayanan (Committee member) / Milcarek, Ryan (Committee member) / Arizona State University (Publisher)
Created2024
193043-Thumbnail Image.png
Description
The measurement of the radiation and convection that the human body experiences are important for ensuring safety in extreme heat conditions. The radiation from the surroundings on the human body is most often measured using globe or cylindrical radiometers. The large errors stemming from differences in internal and exterior temperatures

The measurement of the radiation and convection that the human body experiences are important for ensuring safety in extreme heat conditions. The radiation from the surroundings on the human body is most often measured using globe or cylindrical radiometers. The large errors stemming from differences in internal and exterior temperatures and indirect estimation of convection can be resolved by simultaneously using three cylindrical radiometers (1 cm diameter, 9 cm height) with varying surface properties and internal heating. With three surface balances, the three unknowns (heat transfer coefficient, shortwave, and longwave radiation) can be solved for directly. As compared to integral radiation measurement technique, however, the bottom mounting using a wooden-dowel of the three-cylinder radiometers resulted in underestimated the total absorbed radiation. This first part of this thesis focuses on reducing the size of the three-cylinder radiometers and an alternative mounting that resolves the prior issues. In particular, the heat transfer coefficient in laminar wind tunnel with wind speed of 0.25 to 5 m/s is measured for six polished, heated cylinders with diameter of 1 cm and height of 1.5 to 9 cm mounted using a wooden dowel. For cylinders with height of 6 cm and above, the heat transfer coefficients are independent of the height and agree with the Hilpert correlation for infinitely long cylinder. Subsequently, a side-mounting for heated 6 cm tall cylinder with top and bottom metallic caps is developed and tested within the wind tunnel. The heat transfer coefficient is shown to be independent of the flow-side mounting and in agreement with the Hilpert correlation. The second part of this thesis explores feasibility of employing the three-cylinder concept to measuring all air-flow parameters relevant to human convection including mean wind speed, turbulence intensity and length scale. Heated cylinders with same surface properties but varying diameters are fabricated. Uniformity of their exterior temperature, which is fundamental to the three-cylinder anemometer concept, is tested during operation using infrared camera. To provide a lab-based method to measure convection from the cylinders in turbulent flow, several designs of turbulence-generating fractal grids are laser-cut and introduced into the wind tunnel.
ContributorsGupta, Mahima (Author) / Rykaczewski, Konrad (Thesis advisor) / Pathikonda, Gokul (Thesis advisor) / Middel, Ariane (Committee member) / Arizona State University (Publisher)
Created2024