Matching Items (2)
Filtering by

Clear all filters

152023-Thumbnail Image.png
Description
Intermittent social defeat stress induces cross-sensitization to psychostimulants and escalation of drug self-administration. These behaviors could result from the stress-induced neuroadaptation in the mesocorticolimbic dopamine circuit. Brain-derived neurotrophic factor (BDNF) in the ventral tegmental area (VTA) is persistently elevated after social defeat stress, and may contribute to the stress-induced neuroadaptation

Intermittent social defeat stress induces cross-sensitization to psychostimulants and escalation of drug self-administration. These behaviors could result from the stress-induced neuroadaptation in the mesocorticolimbic dopamine circuit. Brain-derived neurotrophic factor (BDNF) in the ventral tegmental area (VTA) is persistently elevated after social defeat stress, and may contribute to the stress-induced neuroadaptation in the mesocorticolimbic dopamine circuit. BDNF modulates synaptic plasticity, and facilitates stress- and drug-induced neuroadaptations in the mesocorticolimbic system. The present research examined the role of mesolimbic BDNF signaling in social defeat stress-induced cross-sensitization to psychostimulants and the escalation of cocaine self-administration in rats. We measured drug taking behavior with the acquisition, progressive ratio, and binge paradigms during self-administration. With BDNF overexpression in the ventral tegmental area (VTA), single social defeat stress-induced cross-sensitization to amphetamine (AMPH) was significantly potentiated. VTA-BDNF overexpression also facilitates acquisition of cocaine self-administration, and a positive correlation between the level of VTA BDNF and drug intake during 12 hour binge was observed. We also found significant increase of DeltaFosB expression in the nucleus accumbens (NAc), the projection area of the VTA, in rats received intra-VTA BDNF overexpression. We therefore examined whether BDNF signaling in the NAc is important for social defeat stress-induced cross-sensitization by knockdown of the receptor of BDNF (neurotrophin tyrosine kinase receptor type 2, TrkB) there. NAc TrkB knockdown prevented social defeat stress-induced cross-sensitization to psychostimulant. Also social defeat stress-induced increase of DeltaFosB in the NAc was prevented by TrkB knockdown. Several other factors up-regulated by stress, such as the GluA1 subunit of Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor and BDNF in the VTA were also prevented. We conclude that BDNF signaling in the VTA increases social defeat stress-induced vulnerability to psychostimulants, manifested as potentiated cross-sensitization/sensitization to AMPH and escalation of cocaine self-administration. Also BDNF signaling in the NAc is necessary for the stress-induced neuroadaptation and behavioral sensitization to psychostimulants. Therefore, TrkB in the NAc could be a therapeutic target to prevent stress-induced vulnerability to drugs of abuse in the future. DeltaFosB in the NAc shell could be a neural substrate underlying persistent cross-sensitization and augmented cocaine self-administration induced by social defeat stress.
ContributorsWang, Junshi (Author) / Hammer, Ronald (Thesis advisor) / Feuerstein, Burt (Committee member) / Nikulina, Ella (Committee member) / Neisewander, Janet (Committee member) / Arizona State University (Publisher)
Created2013
158842-Thumbnail Image.png
Description
Schizophrenia, a debilitating neuropsychiatric disorder, affects 1% of the population. This multifaceted disorder is comprised of positive (hallucinations/psychosis), negative (social withdrawal/anhedonia) and cognitive symptoms. While treatments for schizophrenia have advanced over the past few years, high economic burdens are still conferred to society, totaling more than $34 billion in direct

Schizophrenia, a debilitating neuropsychiatric disorder, affects 1% of the population. This multifaceted disorder is comprised of positive (hallucinations/psychosis), negative (social withdrawal/anhedonia) and cognitive symptoms. While treatments for schizophrenia have advanced over the past few years, high economic burdens are still conferred to society, totaling more than $34 billion in direct annual costs to the United States of America. Thus, a critical need exists to identify the factors that contribute towards the etiology of schizophrenia. This research aimed to determine the interactions between environmental factors and genetics in the etiology of schizophrenia. Specifically, this research shows that the immediate early gene, early growth response 3 (EGR3), which is upregulated in response to neuronal activity, resides at the center of a biological pathway to confer risk for schizophrenia. While schizophrenia-risk proteins including neuregulin 1 (NRG1) and N-methyl-D-aspartate receptors (NMDAR’s) have been identified upstream of EGR3, the downstream targets of EGR3 remain relatively unknown. This research demonstrates that early growth response 3 regulates the expression of the serotonin 2A-receptor (5HT2AR) in the frontal cortex following the physiologic stimulus, sleep deprivation. This effect is translated to the level of protein as 8 hours of sleep-deprivation results in the upregulation of 5HT2ARs, a target of antipsychotic medications. Additional downstream targets were identified following maximal upregulation of EGR3 through electroconvulsive stimulation (ECS). Both brain-derived neurotrophic factor (BDNF) and its epigenetic regulator, growth arrest DNA-damage-inducible 45 beta (GADD45B) are upregulated one-hour following ECS in the hippocampus and require the presence of EGR3. These proteins play important roles in both cellular proliferation and dendritic structural changes. Next, the effects of ECS on downstream neurobiological processes, hippocampal cellular proliferation and dendritic structural changes were examined. Following ECS, hippocampal cellular proliferationwas increased, and dendritic structural changes were observed in both wild-type and early growth response 3 knock-out (Egr3-/-) mice. Effects in the number of dendritic spines and dendritic complexity following ECS were not found to require EGR3. Collectively, these results demonstrate that neuronal activity leads to the regulation of schizophrenia risk proteins by EGR3 and point to a possible molecular mechanism contributing risk for schizophrenia.
ContributorsMeyers, Kimberly (Author) / Gallitano, Amelia L (Thesis advisor) / Newbern, Jason (Thesis advisor) / Mangone, Marco (Committee member) / Nikulina, Ella (Committee member) / Qiu, Shenfeng (Committee member) / Ferguson, Deveroux (Committee member) / Arizona State University (Publisher)
Created2020