Matching Items (21)
Filtering by

Clear all filters

152641-Thumbnail Image.png
Description
The advent of new high throughput technology allows for increasingly detailed characterization of the immune system in healthy, disease, and age states. The immune system is composed of two main branches: the innate and adaptive immune system, though the border between these two states is appearing less distinct. The adaptive

The advent of new high throughput technology allows for increasingly detailed characterization of the immune system in healthy, disease, and age states. The immune system is composed of two main branches: the innate and adaptive immune system, though the border between these two states is appearing less distinct. The adaptive immune system is further split into two main categories: humoral and cellular immunity. The humoral immune response produces antibodies against specific targets, and these antibodies can be used to learn about disease and normal states. In this document, I use antibodies to characterize the immune system in two ways: 1. I determine the Antibody Status (AbStat) from the data collected from applying sera to an array of non-natural sequence peptides, and demonstrate that this AbStat measure can distinguish between disease, normal, and aged samples as well as produce a single AbStat number for each sample; 2. I search for antigens for use in a cancer vaccine, and this search results in several candidates as well as a new hypothesis. Antibodies provide us with a powerful tool for characterizing the immune system, and this natural tool combined with emerging technologies allows us to learn more about healthy and disease states.
ContributorsWhittemore, Kurt (Author) / Sykes, Kathryn (Thesis advisor) / Johnston, Stephen A. (Committee member) / Jacobs, Bertram (Committee member) / Stafford, Phillip (Committee member) / Stout, Valerie (Committee member) / Arizona State University (Publisher)
Created2014
152822-Thumbnail Image.png
Description
This study aims to unearth monological and monocultural discourses buried under the power of the dominant biomedical model governing the HIV/AIDS debate. The study responds to an apparent consensus, rooted in Western biomedicine and its "standardizations of knowledge," in the production of the current HIV/AIDS discourse, especially in Sub-Saharan Africa.

This study aims to unearth monological and monocultural discourses buried under the power of the dominant biomedical model governing the HIV/AIDS debate. The study responds to an apparent consensus, rooted in Western biomedicine and its "standardizations of knowledge," in the production of the current HIV/AIDS discourse, especially in Sub-Saharan Africa. As a result, biomedicine has become the dominant actor (in) writing and rewriting discourse for the masses while marginalizing other forms of medical knowledge. Specifically, in its development, the Western biomedical model has arguably isolated the disease from its human host and the social experiences that facilitate the disease's transmission, placing it in the realm of laboratories and scientific experts and giving full ownership to Western medical discourse. Coupled with Western assumptions about African culture that reproduce a one-sided discourse informing the social construction of HIV/AIDS in Africa, this Western monopoly thus constrained the extent and efficacy of international prevention efforts. In this context, the goal for this study is not to demonize the West and biomedicine in general. Rather, this study seeks an alternative and less monolithic understanding currently absent in scientific discourses of HIV/AIDS that frequently elevates Western biomedicine over indigenous medicine; the Western expert over the local. The study takes into account the local voices of Sub-Saharan Africa and how the system has affected them, this study utilizes a Foucauldian approach to analyze discourse as a way to explore how certain ways of knowledge are formed in relation to power. This study also examines how certain knowlege is maintaned and reinforced within specific discourses.
ContributorsAbdalla, Mohamed (Author) / Jacobs, Bertram (Thesis advisor) / Robert, Jason (Committee member) / Klimek, Barbara (Committee member) / Arizona State University (Publisher)
Created2014
153408-Thumbnail Image.png
Description
Vaccination remains one of the most effective means for preventing infectious diseases. During viral infection, activated CD8 T cells differentiate into cytotoxic effector cells that directly kill infected cells and produce anti-viral cytokines. Further T cell differentiation results in a population of memory CD8 T cells that have the ability

Vaccination remains one of the most effective means for preventing infectious diseases. During viral infection, activated CD8 T cells differentiate into cytotoxic effector cells that directly kill infected cells and produce anti-viral cytokines. Further T cell differentiation results in a population of memory CD8 T cells that have the ability to self-renew and rapidly proliferate into effector cells during secondary infections. However during persistent viral infection, T cell differentiation is disrupted due to sustained antigen stimulation resulting in a loss of T cell effector function. Despite the development of vaccines for a wide range of viral diseases, efficacious vaccines for persistent viral infections have been challenging to design. Immunization against virus T cell epitopes has been proposed as an alternative vaccination strategy for persistent viral infections, such as HIV. However, vaccines that selectively engage T cell responses can result in inappropriate immune responses that increase, rather than prevent, disease. Quantitative models of virus infection and immune response were used to investigate how virus and immune system variables influence pathogenic versus protective T cell responses generated during persistent viral infection. It was determined that an intermediate precursor frequency of virus-specific memory CD8 T cells prior to LCMV infection resulted in maximum T cell mediated pathology. Increased pathology was independent of antigen sensitivity or the diversity of TCR in the CD8 T cell response, but was dependent on CD8 T cell production of TNF and the magnitude of initial virus exposure. The threshold for exhaustion of responding CD8 T cells ultimately influences the precursor frequency that causes enhanced disease.In addition, viral infection can occur in the context of co-infection by heterologous pathogens that modulate immune responses and/or disease. Co-infection of two unrelated viruses in their natural host, Ectromelia virus (ECTV) and Lymphocytic Choriomeningitis virus (LCMV) infection in mice, were studied. ECTV infection can be a lethal infection in mice due in part to the blockade of antiviral cytokines, including Type I Interferons (IFN-I). It was determined that ECTV/LCMV co-infection results in decreased ECTV viral load and amelioration of ECTV-induced disease, presumably due to IFN-I induction by LCMV. However, immune responses to LCMV in ECTV co-infected mice were also lower compared to mice infected with LCMV alone and biased toward effector-memory cell generation. Thus, providing evidence for bi-directional effects of viral co-infection that modulate disease and immunity. Together the results suggest heterogeneity in T cell responses during vaccination with viral vectors may be in part due to heterologous virus infection or vaccine usage and that TNF-blockade may be useful for minimizing pathology while maintaining protection during virus infection. Lastly, quantitative mathematical models of virus and T cell immunity can be useful to generate predictions regarding which molecular and cellular pathways mediate T cell protection versus pathology.
ContributorsMcAfee, Megan (Author) / Blattman, Joseph N (Thesis advisor) / Anderson, Karen (Committee member) / Jacobs, Bertram (Committee member) / Hogue, Brenda (Committee member) / Arizona State University (Publisher)
Created2015
157475-Thumbnail Image.png
Description
Access to testing for the human immunodeficiency virus (HIV), as well as other care services related to HIV/AIDS, have greatly improved in Tanzania over the last decade. Despite the country’s efforts to increase the number of individuals who get tested for HIV annually, it is estimated that only 52.2-70.0% of

Access to testing for the human immunodeficiency virus (HIV), as well as other care services related to HIV/AIDS, have greatly improved in Tanzania over the last decade. Despite the country’s efforts to increase the number of individuals who get tested for HIV annually, it is estimated that only 52.2-70.0% of people living with HIV (PLWH) knew their HIV positive status at the end of 2017. In addition, research in Tanzania has shown that HIV-related stigma and discrimination are widespread and contribute to low uptake of HIV testing and non-adherence to antiretroviral treatment (ART). In order to achieve the goals set forth by the Government of Tanzania and the Joint United Nations Programme on HIV/AIDS (UNAIDS), as well as move towards an AIDS-free generation, a deeper understanding of the stigma-related barriers to seeking an HIV test is necessary. This research aims to better understand the relationship between HIV-related stigma and attitudes towards HIV testing among community members in Northern Tanzania. In addition, it looked at the specific barriers that contribute to low uptake of HIV testing, as well as the impact of social networks on an individual’s motivation and willingness to get tested for HIV. In this research, community members in Meru District (N = 108, male = 69.4%, female = 28.7%) were surveyed using various validated instruments that covered a range of topics, including knowledge of HIV/AIDS, testing attitudes, and perceived risk of HIV infection. The mean overall score for correct answers on the knowledge measure was 69.8% (SD = 16.4). There were no significant group differences between individuals who had ever tested and individuals who had not tested in relation to HIV/AIDS knowledge or HIV testing attitudes. The factors that were significantly associated with getting an HIV test were knowing someone who had previously tested (p = 0.003), as well as openly discussing HIV testing within one’s social group (p = 0.017). Participants also provided qualitative responses for barriers to receiving an HIV test, motivations for getting tested, and suggested interventions for improving HIV testing uptake. The goal of this research is to develop recommendations for interventions that are better informed by attitudes and motivations for testing.
ContributorsAllen, Megan (Author) / Jacobs, Bertram (Thesis advisor) / Neuberg, Steven (Committee member) / Ellison, Karin (Committee member) / Arizona State University (Publisher)
Created2019
135663-Thumbnail Image.png
Description
Vaccinia virus (VV) is a prototype virus of the Orthopox viruses. The large dsDNA virus composed of 200kbp genome contains approximately 200 genes and replicates entirely in the cytosol. Since its use as a live vaccine against smallpox that leads to the successful eradication of smallpox, Vaccinia has been intensely

Vaccinia virus (VV) is a prototype virus of the Orthopox viruses. The large dsDNA virus composed of 200kbp genome contains approximately 200 genes and replicates entirely in the cytosol. Since its use as a live vaccine against smallpox that leads to the successful eradication of smallpox, Vaccinia has been intensely studied as a vaccine vector since the large genome allows for the insertion of multiple genes. It is also studied as a molecular tool for gene therapy and gene functional study. Despite its success as a live vaccine, the vaccination causes some mild to serious bur rare adverse events in vaccinees such as generalized Vaccinia and encepharitis. Therefore, identification of virulence genes and removal of these genes to create a safer vaccine remain an important tasks. In this study, the author seeks to elucidate the possible relationship between immune evading proteins E3 and B19. VV did not allow double deletions of E3 and B19, indicating the existence of a relationship between the two genes.
ContributorsBarclay, Shizuka (Author) / Jacobs, Bertram (Thesis director) / Ugarova, Tatiana (Committee member) / Kibler, Karen (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
134414-Thumbnail Image.png
Description
Vaccinia virus is a cytoplasmic, double-stranded DNA orthopoxvirus. Unlike mammalian cells, vaccinia virus produces double-stranded RNA (dsRNA) during its viral life cycle. The protein kinase R, PKR, is one of the principal host defense mechanisms against orthopoxvirus infection. PKR can bind double-stranded RNA and phosphorylate eukaryotic translation initiation factor, eIF2α,

Vaccinia virus is a cytoplasmic, double-stranded DNA orthopoxvirus. Unlike mammalian cells, vaccinia virus produces double-stranded RNA (dsRNA) during its viral life cycle. The protein kinase R, PKR, is one of the principal host defense mechanisms against orthopoxvirus infection. PKR can bind double-stranded RNA and phosphorylate eukaryotic translation initiation factor, eIF2α, shutting down protein synthesis and halting the viral life cycle. To combat host defenses, vaccinia virus encodes E3, a potent inhibitor of the cellular anti-viral eIF2α kinase, PKR. The E3 protein contains a C-terminal dsRNA-binding motif that sequesters dsRNA and inhibits PKR activation. We demonstrate that E3 also interacts with PKR by co-immunoprecipitation. This interaction is independent of the presence of dsRNA and dsRNA-binding by E3, indicating that the interaction is not due to dsRNA-bridging.
PKR interaction mapped to a region within the dsRNA-binding domain of E3 and overlapped with sequences in the C-terminus of this domain that are necessary for binding to dsRNA. Point mutants of E3 were generated and screened for PKR inhibition and direct interaction. Analysis of these mutants demonstrates that dsRNA-binding but not PKR interaction plays a critical role in the broad host range of VACV. Nonetheless, full inhibition of PKR in cells in culture requires both dsRNA-binding and PKR interaction. Because E3 is highly conserved among orthopoxviruses, understanding the mechanisms that E3 uses to inhibit PKR can give insight into host range pathogenesis of dsRNA producing viruses.
ContributorsFoster, Clayton (Co-author) / Alattar, Hamed (Co-author) / Jacobs, Bertram (Thesis director) / Blattman, Joseph (Committee member) / McFadden, Grant (Committee member) / School of Life Sciences (Contributor) / W. P. Carey School of Business (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
133473-Thumbnail Image.png
Description
Laboratory animals represent an invaluable, yet controversial, resource in the field of biomedical research. Animal research has been behind many influential discoveries in the field of emerging therapeutics. They provide the link between the theory of the lab bench and the functional application of medicine to influence human health. The

Laboratory animals represent an invaluable, yet controversial, resource in the field of biomedical research. Animal research has been behind many influential discoveries in the field of emerging therapeutics. They provide the link between the theory of the lab bench and the functional application of medicine to influence human health. The use of animals in research is a consideration which must be heavily weighed, and the implementation must be carried out at a very high standard in order to retain research integrity and responsibility. We are in the process of conducting an experiment using laboratory mice to demonstrate cancer treatment using vaccinia (VACV) mutants as a possible oncolytic therapy for certain strains of melanoma. VACV is a double-stranded DNA poxvirus with a large and easily altered genome. This virus contains many genes dedicated to immune evasion, but has shown sensitivity to cell death by necroptosis in mouse studies (5). We have identified the absence of the kinase RIP3 which is vital in the necroptosis pathway as a potential target for oncolytic therapy using VACV mutants in specific strains of melanoma. Multiple groups of SCID Beige mice were inoculated with different melanoma cell lines and observed for tumor growth. Upon reaching 1 cm3 in volume, tumors were injected with either VACV- Δ83N, VACV- Δ54N, or PBS, and observed for regression. It was hypothesized that melanoma tumors that are RIP3-/- such as the MDA5 cell line will show regression, but melanoma tumors that are RIP3-positive and capable of necroptosis, such as the 2427 cell line, will resist viral replication and continue to proliferate. Our results so far tentatively support this hypothesis, but the data collection is ongoing. Strict and specific protocols with regard to the ethical and responsible use of mice have been implemented and upheld throughout the experiment. Animals are closely monitored, and if their quality of life becomes too poor to justify their continued use in the experiment, they are humanely euthanized, even at the expense of valuable data. The importance of commitment to a high ethical standard is pervasive throughout our work. Animals represent an invaluable contribution to research, and it is important to maintain high standards and transparency with regard to their use. Education and engagement in critical discussions about the use and care of animals in the laboratory contribute to the overall merit and legitimacy of biomedical research in the public and professional eye as a whole, and give legitimacy to the continued use of animals as models to advance science and health.
ContributorsBergamaschi, Julia (Author) / Kibler, Karen (Thesis director) / Jacobs, Bertram (Committee member) / School of Human Evolution and Social Change (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133138-Thumbnail Image.png
Description
The International Space Station (ISS) utilizes recycled water for consumption, cleaning and air humidity control. The Environmental Control and Life Support Systems (ECLSS) have been rigorously tested at the NASA Johnson Space Center. Despite the advanced engineering of the water recovery system, bacterial biofilms have been recovered from this potable

The International Space Station (ISS) utilizes recycled water for consumption, cleaning and air humidity control. The Environmental Control and Life Support Systems (ECLSS) have been rigorously tested at the NASA Johnson Space Center. Despite the advanced engineering of the water recovery system, bacterial biofilms have been recovered from this potable water source. Microbial contamination of potable water poses a potential threat to crew members onboard the ISS. Because astronauts have been found to have compromised immune systems, bacterial strains that would not typically be considered a danger must be carefully studied to better understand the mechanisms enabling their survival, including polymicrobial interactions. The need for a more thorough understanding of the effect of spaceflight environment on polymicrobial interactions and potential impact on crew health and vehicle integrity is heightened since 1) several potential pathogens have been isolated from the ISS potable water system, 2) spaceflight has been shown to induce unexpected alterations in microbial responses, and 3) emergent phenotypes are often observed when multiple bacterial species are co- cultured together, as compared to pure cultures of single species. In order to address these concerns, suitable growth media are required that will not only support the isolation of these microbes but also the ability to distinguish between them when grown as mixed cultures. In this study, selective and/or differential media were developed for bacterial isolates collected from the ISS potable water supply. In addition to facilitating discrimination between bacteria, the ideal media for each strain was intended to have a 100% recovery rate compared to traditional R2A media. Antibiotic and reagent susceptibility and resistance tests were conducted for the purpose of developing each individual medium. To study a wide range of targets, 12 antibiotics were selected from seven major classes, including penicillin, cephalosporins, fluoroquinolones, aminoglycosides, glycopeptides/lipoglycopeptides, macrolides/lincosamides/streptogramins, tetracyclines, in addition to seven unclassified antibiotics and three reagents. Once developed, medium efficacy was determined by means of growth curve experiments. The development of these media is a critical step for further research into the mechanisms utilized by these strains to survive the harsh conditions of the ISS water system. Furthermore, with an understanding of the complex nature of these polymicrobial communities, specific contamination targeting and control can be conducted to reduce the risk to crew members. Understanding these microbial species and their susceptibilities has potential application for future NASA human explorations, including those to Mars.
ContributorsKing, Olivia Grace (Author) / Nickerson, Cheryl (Thesis director) / Barrila, Jennifer (Committee member) / Ott, Mark (Committee member) / School of Sustainability (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
134904-Thumbnail Image.png
Description
The concept of “good” research is concrete in terms of technique, but complex in theory. As technology advances, the complexity of problems we must solve also grows. Research is facing an ethical dilemma—which projects, applied or basic, should be funded. Research is no longer an isolated sector in society, and

The concept of “good” research is concrete in terms of technique, but complex in theory. As technology advances, the complexity of problems we must solve also grows. Research is facing an ethical dilemma—which projects, applied or basic, should be funded. Research is no longer an isolated sector in society, and the decisions made inside of the laboratory are affecting the general public more directly than ever before. While there is no correct answer to what the future of research should be, it is clear that good research can no longer be only defined by the current classification system, which is rooted in antiquated, yet ingrained, social status distinctions.
Differences between basic and applied research were explored through a wet-lab case study. Vaccinia virus (VACV) infections are a prime model of the competition between a virus and its host. VACV contains a gene that is highly evasive of the host immune system, gene E3L. The protein encoded by E3L is E3, which contains two highly conserved regions, a C-terminus, and a N-terminus. While the C-terminus is well-understood, the mechanism by which the N-terminus grants IFN resistance was previously unknown. This project demonstrated that the N-terminus prevents the initiation of programmed necrosis through host-encoded cellular proteins RIP3 and DAI. These findings provide insight into the function of the N-terminus of E3, as well as the unique functions of induced programmed necrosis.
This project was an example of “basic” research. However, it highlights the interconnectivity of basic and applied research and the danger in isolating both projects and perspectives. It points to the difficult decisions that must be made in science, and the need for a better research classification system that considers what makes science “good” outside of antiquated social class ideologies that have shaped science since ancient Greece. While there are no easy answers to determine what makes research “good,” thinking critically about the types of research projects that will be pursued, and the effects that research has on both science and society, will raise awareness, initiate new conversations, and encourage more dialogue about science in the 21st century.
ContributorsSnyder, Caroline Jane (Author) / Jacobs, Bertram (Thesis director) / Hurlbut, Ben (Committee member) / Mateusz, Szczerba (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
154653-Thumbnail Image.png
Description
Salmonella enterica serovar Typhimurium (S. Typhimurium) is a Gram-negative enteric pathogen that causes self-limiting gastroenteritis in healthy individuals and can cause systemic infections in those who are immunocompromised. During its natural lifecycle, S. Typhimurium encounters a wide variety of stresses it must sense and respond to in a dynamic and

Salmonella enterica serovar Typhimurium (S. Typhimurium) is a Gram-negative enteric pathogen that causes self-limiting gastroenteritis in healthy individuals and can cause systemic infections in those who are immunocompromised. During its natural lifecycle, S. Typhimurium encounters a wide variety of stresses it must sense and respond to in a dynamic and coordinated fashion to induce resistance and ensure survival. Salmonella is subjected to a series of stresses that include temperature shifts, pH variability, detergent-like bile salts, oxidative environments and changes in fluid shear levels. Previously, our lab showed that cultures of S. Typhimurium grown under physiological low fluid shear (LFS) conditions similar to those encountered in the intestinal tract during infection uniquely regulates the virulence, gene expression and pathogenesis-related stress responses of this pathogen during log phase. Interestingly, the log phase Salmonella mechanosensitive responses to LFS were independent of the master stress response sigma factor, RpoS, departing from our conventional understanding of RpoS regulation. Since RpoS is a growth phase dependent regulator with increased stability in stationary phase, the current study investigated the role of RpoS in mediating pathogenesis-related stress responses in stationary phase S. Typhimurium grown under LFS and control conditions. Specifically, stationary phase responses to acid, thermal, bile and oxidative stress were assayed. To our knowledge the results from the current study demonstrate the first report that the mechanical force of LFS globally alters the S. Typhimurium χ3339 stationary phase stress response independently of RpoS to acid and bile stressors but dependently on RpoS to oxidative and thermal stress. This indicates that fluid shear-dependent differences in acid and bile stress responses are regulated by alternative pathway(s) in S. Typhimurium, were the oxidative and thermal stress responses are regulated through RpoS in LFS conditions. Results from this study further highlight how bacterial mechanosensation may be important in promoting niche recognition and adaptation in the mammalian host during infection, and may lead to characterization of previously unidentified pathogenesis strategies.
ContributorsCrenshaw, Keith (Author) / Nickerson, Cheryl A. (Thesis advisor) / Barrila, Jennifer (Thesis advisor) / Ott, C. (Committee member) / Stout, Valerie (Committee member) / Arizona State University (Publisher)
Created2016