Matching Items (93)
Filtering by

Clear all filters

136383-Thumbnail Image.png
Description
We, a team of students and faculty in the life sciences at Arizona State University (ASU), currently teach an Introduction to Biology course in a Level 5, or maximum-security unit with the support of the Arizona Department of Corrections and the Prison Education Program at ASU. This course aims to

We, a team of students and faculty in the life sciences at Arizona State University (ASU), currently teach an Introduction to Biology course in a Level 5, or maximum-security unit with the support of the Arizona Department of Corrections and the Prison Education Program at ASU. This course aims to enhance current programs at the unit by offering inmates an opportunity to practice literacy and math skills, while also providing exposure to a new academic field (science, and specifically biology). Numerous studies, including a 2005 study from the Arizona Department of Corrections (ADC), have found that vocational programs, including prison education programs, reduce recidivism rates (ADC 2005, Esperian 2010, Jancic 1988, Steurer et al. 2001, Ubic 2002) and may provide additional benefits such as engagement with a world outside the justice system (Duguid 1992), the opportunity for inmates to revise personal patterns of rejecting education that they may regret, and the ability of inmate parents to deliberately set a good example for their children (Hall and Killacky 2008). Teaching in a maximum security prison unit poses special challenges, which include a prohibition on most outside materials (except paper), severe restrictions on student-teacher and student-student interactions, and the inability to perform any lab exercises except limited computer simulations. Lack of literature discussing theoretical and practical aspects of teaching science in such environment has prompted us to conduct an ongoing study to generate notes and recommendations from this class through the use of surveys, academic evaluation of students' work and ongoing feedback from both teachers and students to inform teaching practices in future science classes in high-security prison units.
ContributorsLarson, Anika Jade (Author) / Mor, Tsafrir (Thesis director) / Brownell, Sara (Committee member) / Lockard, Joe (Committee member) / Barrett, The Honors College (Contributor) / School of Politics and Global Studies (Contributor) / School of Life Sciences (Contributor)
Created2015-05
147692-Thumbnail Image.png
Description

Much is still unknown about dominance hierarchies. Many different species form dominance hierarchies and each species have very different ways of forming these hierarchies. Some engage in various different dominance interactions to establish a dominant position. This experiment aims to use the ant species, Harpegnathos saltator, as a model to

Much is still unknown about dominance hierarchies. Many different species form dominance hierarchies and each species have very different ways of forming these hierarchies. Some engage in various different dominance interactions to establish a dominant position. This experiment aims to use the ant species, Harpegnathos saltator, as a model to explore what sets dominant individuals, or gamergates in this case, apart from non-dominant individuals, or non-gamergates. H. saltator ants perform various different behaviors such as dueling, which is a mutually beneficial behavior, dominance biting, which is an aggressive behavior, and policing which is used to bring down those who are dominant. These behaviors can be used to study the importance of initiation and aggression in hierarchy formation. This experiment will explore how aggression through dominance biting, duel initiation, group size, and time period affect the formation of gamergates. To do so, socially unstable colonies of 15, 30, and 60 ants were video recorded for days until gamergates were established. Then, from the recordings, a period of high activity was selected and observed for dueling, duel initiation, dominance biting, dominance bite downs, and policing. The results showed that gamergates tended to perform dominance biting and dominance bite downs far more than non-gamergates during the period of high activity, but not as clearly with duelling and duel initiations. It was inconclusive whether or not the combination of both dueling and dominance biting was what set gamergates apart from non gamergates as different groups showed different results. Gamergates performed visibly more dominance bite downs than non-gamergates, so aggression may be important in setting gamergates apart from non-gamergates. In terms of group size, the smallest group had the least number of gamergates and the least activity, and the medium and large group had a similar number of gamergates and activity.

ContributorsVarghese, Sarah (Author) / Liebig, Juergen (Thesis director) / Haight, Kevin (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148264-Thumbnail Image.png
Description

The bull shark, Carcharhinus leucas, is a large species that it is commonly distributed worldwide in tropical and subtropical waters. Despite the bull sharks global distribution, little is known about its life history. In particular, the limited reproductive information suggests the bull shark is placental viviparous, assumed to have a

The bull shark, Carcharhinus leucas, is a large species that it is commonly distributed worldwide in tropical and subtropical waters. Despite the bull sharks global distribution, little is known about its life history. In particular, the limited reproductive information suggests the bull shark is placental viviparous, assumed to have a biennial cycle, and that newborn pup nurseries are near the coast. In order to conserve and protect any species, an understanding of the habitats where reproductive events occur is needed. In order to better understand the habitat use in Biscayne bay, Fla, and whether certain areas are critical during the reproductive cycle of bull sharks, I will evaluate circulating levels of the hormones progesterone, estradiol, and testosterone using radioimmunoassay. These samples were collected by the University of Miami opportunistically between 2012-2020 shipped to Arizona State University, where they were analyzed. For my study a total of 73 mature samples, 27 females and 46 males, were collected over the sampling period. The results indicated that Biscayne bay is an important gestation area for bull sharks. The hormonal trends for males and females demonstrated an interesting reproductive cycle, which were further supported through other placental viviparous reproductive patterns. Females had a low level of estradiol throughout most of the year, besides in the summer where there were no sharks in the bay due to movement to estuaries. During their return to the bay, there was a peak in progesterone indicating early pregnancy. Male testosterone levels indicated that there was a production in sperm right before females speculated peak in estradiol.

ContributorsJara-Aguirre, Nisi G (Author) / Sulikowski, James (Thesis director) / Ferry, Lara (Committee member) / School of Life Sciences (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148289-Thumbnail Image.png
Description

Bermuda Land Snails make up a genus called Poecilozonites that is endemic to Bermuda and is extensively present in its fossil record. These snails were also integral to the creation of the theory of punctuated equilibrium. The DNA of mollusks is difficult to sequence because of a class of proteins

Bermuda Land Snails make up a genus called Poecilozonites that is endemic to Bermuda and is extensively present in its fossil record. These snails were also integral to the creation of the theory of punctuated equilibrium. The DNA of mollusks is difficult to sequence because of a class of proteins called mucopolysaccharides that are present in high concentrations in mollusk tissue, and are not removed with standard DNA extraction methods. They inhibit Polymerase Chain Reactions (PCRs) and interfere with Next Generation Sequencing methods. This paper will discuss the DNA extraction methods that were designed to remove the inhibitory proteins that were tested on another gastropod species (Pomacea canaliculata). These were chosen because they are invasive and while they are not pulmonates, they are similar enough to Bermuda Land Snails to reliably test extraction methods. The methods that were tested included two commercially available kits: the Qiagen Blood and Tissue Kit and the Omega Biotek Mollusc Extraction Kit, and one Hexadecyltrimethylammonium Bromide (CTAB) Extraction method that was modified for use on mollusk tissue. The Blood and Tissue kit produced some DNA, the mollusk kit produced almost none, and the CTAB Extraction Method produced the highest concentrations on average, and may prove to be the most viable option for future extractions. PCRs attempted with the extracted DNA have all failed, though it is likely due to an issue with reagents. Further spectrographic analysis of the DNA from the test extractions has shown that they were successful at removing mucopolysaccharides. When the protocol is optimized, it will be used to extract DNA from the tissue from six individuals from each of the two extant species of Bermuda Land Snails. This DNA will be used in several experiments involving Next Generation Sequencing, with the goal of assembling a variety of genome data. These data will then be used to a construct reference genome for Bermuda Land Snails. The genomes generated by this project will be used in population genetic analyses between individuals of the same species, and between individuals of different species. These analyses will then be used to aid in conservation efforts for the species.

ContributorsClark, Patrick Louis (Author) / Stone, Anne (Thesis director) / Winingear, Stevie (Committee member) / School of Life Sciences (Contributor, Contributor) / School of Human Evolution & Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
131069-Thumbnail Image.png
Description
Pathway analysis helps researchers gain insight into the biology behind gene expression-based data. By applying this data to known biological pathways, we can learn about mutations or other changes in cellular function, such as those seen in cancer. There are many tools that can be used to analyze pathways; however,

Pathway analysis helps researchers gain insight into the biology behind gene expression-based data. By applying this data to known biological pathways, we can learn about mutations or other changes in cellular function, such as those seen in cancer. There are many tools that can be used to analyze pathways; however, it can be difficult to find and learn about the which tool is optimal for use in a certain experiment. This thesis aims to comprehensively review four tools, Cytoscape, PaxtoolsR, PathOlogist, and Reactome, and their role in pathway analysis. This is done by applying a known microarray data set to each tool and testing their different functions. The functions of these programs will then be analyzed to determine their roles in learning about biology and assisting new researchers with their experiments. It was found that each tools holds a very unique and important role in pathway analysis. Visualization pathways have the role of exploring individual pathways and interpreting genomic results. Quantification pathways use statistical tests to determine pathway significance. Together one can find pathways of interest and then explore areas of interest.
ContributorsRehling, Thomas Evan (Author) / Buetow, Kenneth (Thesis director) / Wilson, Melissa (Committee member) / School of Life Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131096-Thumbnail Image.png
Description
HIV continues to remain a global health issue, in particular in many low and middle-income countries. The World Health Organization (WHO) estimates that of the nearly 38 million HIV-1 positive individuals, 25% are unaware they are infected. Despite decades of research, a safe and effective preventative vaccine has yet to

HIV continues to remain a global health issue, in particular in many low and middle-income countries. The World Health Organization (WHO) estimates that of the nearly 38 million HIV-1 positive individuals, 25% are unaware they are infected. Despite decades of research, a safe and effective preventative vaccine has yet to be produced. The HIV-1 envelope glycoprotein41 and the Gag structural protein have been identified to be particularly important in HIV-1 transcytosis and cytotoxic lymphocyte response, respectively. Enveloped virus-like particles (VLPs) consisting of Gag and a deconstructed form of glycoprotein (dgp41) comprising the membrane proximal external region (MPER), transmembrane domain and cytoplasmic tail may present a unique and safe way of presenting these proteins in a state mimicking their natural formation. Another form of presenting the immunogenic glycoprotein41, particularly the MPER component, is by presenting it onto the N-terminal of an IgG molecule, thereby creating an IgG fusion molecule. In our lab, both VLPs and IgG fusion molecules are highly expressed and purified within GnGn Nicotiana benthamiana. The results indicated that these recombinant proteins can be assembled properly within plants and can elicit an immune response in mice. This provides a preliminary step in using such Gag/dpg41 VLPs and RIC as present a safe, effective, and inexpensive HIV vaccine.
ContributorsGarcia, Izamar (Author) / Mor, Tsafrir (Thesis director) / Mason, Hugh (Committee member) / Kamzina, Aigerim (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131300-Thumbnail Image.png
Description
The 18S ribosomal RNA gene is ubiquitous across eukaryotes as it encodes the RNA component of the ribosomal small subunit. It is the most commonly used marker in molecular studies of unicellular eukaryotes (protists) due to its species specificity and high copy number in the protist genome. Recent studies have

The 18S ribosomal RNA gene is ubiquitous across eukaryotes as it encodes the RNA component of the ribosomal small subunit. It is the most commonly used marker in molecular studies of unicellular eukaryotes (protists) due to its species specificity and high copy number in the protist genome. Recent studies have revealed the widespread occurrence of intragenomic (intra-individual) polymorphism in many protists, an understudied phenomenon which contradicts the assumed homogeneity of the 18S throughout an individual genome. This thesis quantifies and analyzes the level of intragenomic and intraspecific 18S sequence variability in three Trichonympha species (T. campanula, T. collaris, T. postcylindrica) from Zootermopsis termites. Single-cell DNA extractions, PCR, cloning, and sequencing were performed to obtain 18S rRNA sequence reads, which were then analyzed to determine levels of sequence divergence among individuals and among species. Intragenomic variability was encountered in all three species. However, excluding singleton mutations, sequence divergence was less than 1% in 53 of the 56 compared individuals. T. collaris exhibited the most substantial intragenomic variability, with sequence divergence ranging from 0 to 3.4%. Further studies with more clones per cell are needed to elucidate the true extent of intragenomic variability in Trichonympha.
ContributorsBobbett, Bradley (Author) / Gile, Gillian (Thesis director) / Liebig, Juergen (Committee member) / School of International Letters and Cultures (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131157-Thumbnail Image.png
Description
Following the journey through the sewerage system, wastewater is subject to a series of purification procedures, prior to water reuse and disposal of the resultant sewage sludge. Biosolids, also known as treated sewage sludge, deemed fit for application on land, is a nutrient-rich, semisolid byproduct of biological wastewater treatment.

Following the journey through the sewerage system, wastewater is subject to a series of purification procedures, prior to water reuse and disposal of the resultant sewage sludge. Biosolids, also known as treated sewage sludge, deemed fit for application on land, is a nutrient-rich, semisolid byproduct of biological wastewater treatment. Technological progression in metagenomics has allowed for large-scale analysis of complex viral communities in a number of samples, including wastewater. Members of the Microviridae family are non-enveloped, ssDNA bacteriophages, and are known to infect enterobacteria. Members of the Genomoviridae family similarly are non-enveloped, ssDNA viruses, but are presumed to infect fungi rather than eubacteria. As these two families of viruses are not relatively documented and their diversity poorly classified, this study aimed to analyze the presence of genomoviruses and the diversity of microviruses in nine samples representative of wastewater in Arizona and other regions of the United States. Using a metagenomic approach, the nucleic acids of genomoviruses and microviruses were isolated, assembled into complete genomes, and characterized through visual analysis: a heat chart showing percent coverage for genomoviruses and a circular phylogenetic tree showing diversity of microviruses. The heat map results for the genomoviruses showed a large presence of 99 novel sequences in all nine wastewater samples. Additionally, the 535 novel microviruses displayed great diversity in the cladogram, both in terms of sub-family and isolation source. Further research should be conducted in order to classify the taxonomy of microviruses and the diversity of genomoviruses. Finally, this study suggests future exploration of the viral host, prior to entering the wastewater system.
ContributorsSchreck, Joshua Reuben (Author) / Varsani, Arvind (Thesis director) / Rolf, Halden (Committee member) / Misra, Rajeev (Committee member) / School of Film, Dance and Theatre (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131458-Thumbnail Image.png
Description
The changes in marine ecological conditions brought on by warming and stratification of the oceans have radically shifted many marine environments around the globe. This project aimed to better characterize the aggregation behavior of the abundant picocyanobacterium Prochlorococcus marinus, which is hypothesized to dominate over other phytoplankton as the primary

The changes in marine ecological conditions brought on by warming and stratification of the oceans have radically shifted many marine environments around the globe. This project aimed to better characterize the aggregation behavior of the abundant picocyanobacterium Prochlorococcus marinus, which is hypothesized to dominate over other phytoplankton as the primary autotroph in increasingly warmer and nutrient poor oceans. This aggregation, believed to be mediated through the secretion of sticky Transparent Exopolymeric Substances (TEP), might be key for Prochlorococcus to sink throughout the ocean and serve as a source of carbon to other communities within its environment. Considering the relatively low concentration of TEP secreted by Prochlorococcus when on its own, this study explored the synergistic effect that heterotrophic bacteria and inorganic minerals in the surrounding seawater may have on the aggregation of P. marinus. This was done by inoculating P. marinus and the model heterotroph Marinobacter adhaerens HP15 individually and mixed in cylindrical roller tanks with the addition of ballasting clay minerals into roller tanks to simulate constant sinking for 7 days. The aggregates which formed after rolling were quantified and their sinking velocities and excess densities were measured. Our results indicate that the most numerous and densest aggregates formed when Prochlorococcus was in the presence of both M. adhaerens and kaolinite clay particles. I will discuss how methodology, particularly cell number, may play a role in the enhanced aggregation that I found when Prochlorococcus was cultured together with the Marinobacter.
ContributorsAouad, Samer Ghassan (Author) / Neuer, Susanne (Thesis director) / Cadillo-Quiroz, Hinsby (Committee member) / Cruz, Bianca (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131368-Thumbnail Image.png
Description
The retinoid-X receptor (RXR) can form heterodimers with both the retinoic-acid
receptor (RAR) and vitamin D receptor (VDR). The RXR/RAR dimer is activated by ligand all
trans retinoic acid (ATRA), which culminates in gut-specific effector T cell migration. Similarly,
the VDR/RXR dimer binds 1,25(OH)2D3 to cause skin-specific effector T cell migration.

The retinoid-X receptor (RXR) can form heterodimers with both the retinoic-acid
receptor (RAR) and vitamin D receptor (VDR). The RXR/RAR dimer is activated by ligand all
trans retinoic acid (ATRA), which culminates in gut-specific effector T cell migration. Similarly,
the VDR/RXR dimer binds 1,25(OH)2D3 to cause skin-specific effector T cell migration.
Targeted migration is a potent addition to current vaccines, as it would induce activated T cell
trafficking to appropriate areas of the immune system and ensure optimal stimulation (40).
ATRA, while in use clinically, is limited by toxicity and chemical instability. Rexinoids
are stable, synthetically developed ligands specific for the RXR. We have previously shown that
select rexinoids can enhance upregulation of gut tropic CCR9 receptors on effector T cells.
However, it is important to establish whether these cells can actually migrate, to show the
potential of rexinoids as vaccine adjuvants that can cause gut specific T cell migration.
Additionally, since the RXR is a major contributor to VDR-mediated transcription and
epidermotropism (15), it is worth investigating whether these compounds can also function as
adjuvants that promote migration by increasing expression of skin tropic CCR10 receptors on T
cells.
Prior experiments have demonstrated that select rexinoids can induce gut tropic migration
of CD8+ T cells in an in vitro assay and are comparable in effectiveness to ATRA (7). The effect
of rexinoids on CD4+ T cells is unknown however, so the aim of this project was to determine if
rexinoids can cause gut tropic migration in CD4+ T cells to a similar extent. A secondary aim
was to investigate whether varying concentrations in 1,25-Dihydroxyvitamin D3 can be linked to
increasing CCR10 upregulation on Jurkat CD4+ T cells, with the future aim to combine 1,25
Dihydroxyvitamin D3 with rexinoids.
These hypotheses were tested using murine splenocytes for the migration experiment, and
human Jurkat CD4+ T cells for the vitamin D experiment. Migration was assessed using a
Transwell chemotaxis assay. Our findings support the potential of rexinoids as compounds
capable of causing gut-tropic migration in murine CD4+ T cells in vitro, like ATRA. We did not
observe conclusive evidence that vitamin D3 causes upregulated CCR10 expression, but this
experiment must be repeated with a human primary T cell line.
ContributorsDebray, Hannah Zara (Co-author) / Debray, Hannah (Co-author) / Blattman, Joseph (Thesis director) / Jurutka, Peter (Committee member) / Manhas, Kavita (Committee member) / Department of Psychology (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05