Matching Items (148)
Filtering by

Clear all filters

151260-Thumbnail Image.png
Description
Social structure affects many aspects of ecology including mating systems, dispersal, and movements. The quality and pattern of associations among individuals can define social structure, thus detailed behavioral observations are vital to understanding species social structure and many other aspects of their ecology. In squamate reptiles (lizards and snakes), detailed

Social structure affects many aspects of ecology including mating systems, dispersal, and movements. The quality and pattern of associations among individuals can define social structure, thus detailed behavioral observations are vital to understanding species social structure and many other aspects of their ecology. In squamate reptiles (lizards and snakes), detailed observations of associations among individuals have been primarily limited to several lineages of lizards and have revealed a variety of social structures, including polygynous family group-living and monogamous pair-living. Here I describe the social structure of two communities within a population of Arizona black rattlesnakes (Crotalus cerberus) using association indices and social network analysis. I used remote timelapse cameras to semi-continuously sample rattlesnake behavior at communal basking sites during early April through mid-May in 2011 and 2012. I calculated an association index for each dyad (proportion of time they spent together) and used these indices to construct a weighted, undirected social network for each community. I found that individual C. cerberus vary in their tendency to form associations and are selective about with whom they associate. Some individuals preferred to be alone or in small groups while others preferred to be in large groups. Overall, rattlesnakes exhibited non-random association patterns, and this result was mainly driven by association selection of adults. Adults had greater association strengths and were more likely to have limited and selected associates. I identified eight subgroups within the two communities (five in one, three in the other), all of which contained adults and juveniles. My study is the first to show selected associations among individual snakes, but to my knowledge it is also the first to use association indices and social network analysis to examine association patterns among snakes. When these methods are applied to other snake species that aggregate, I anticipate the `discovery' of similar social structures.
ContributorsAmarello, Melissa (Author) / DeNardo, Dale F (Thesis advisor) / Sullivan, Brian K. (Committee member) / Schuett, Gordon W. (Committee member) / Arizona State University (Publisher)
Created2012
151119-Thumbnail Image.png
Description
The spread of invasive species may be greatly affected by human responses to prior species spread, but models and estimation methods seldom explicitly consider human responses. I investigate the effects of management responses on estimates of invasive species spread rates. To do this, I create an agent-based simulation model of

The spread of invasive species may be greatly affected by human responses to prior species spread, but models and estimation methods seldom explicitly consider human responses. I investigate the effects of management responses on estimates of invasive species spread rates. To do this, I create an agent-based simulation model of an insect invasion across a county-level citrus landscape. My model provides an approximation of a complex spatial environment while allowing the "truth" to be known. The modeled environment consists of citrus orchards with insect pests dispersing among them. Insects move across the simulation environment infesting orchards, while orchard managers respond by administering insecticide according to analyst-selected behavior profiles and management responses may depend on prior invasion states. Dispersal data is generated in each simulation and used to calculate spread rate via a set of estimators selected for their predominance in the empirical literature. Spread rate is a mechanistic, emergent phenomenon measured at the population level caused by a suite of latent biological, environmental, and anthropogenic. I test the effectiveness of orchard behavior profiles on invasion suppression and evaluate the robustness of the estimators given orchard responses. I find that allowing growers to use future expectations of spread in management decisions leads to reduced spread rates. Acting in a preventative manner by applying insecticide before insects are actually present, orchards are able to lower spread rates more than by reactive behavior alone. Spread rates are highly sensitive to spatial configuration. Spatial configuration is hardly a random process, consisting of many latent factors often not accounted for in spread rate estimation. Not considering these factors may lead to an omitted variables bias and skew estimation results. The ability of spread rate estimators to predict future spread varies considerably between estimators, and with spatial configuration, invader biological parameters, and orchard behavior profile. The model suggests that understanding the latent factors inherent to dispersal is important for selecting phenomenological models of spread and interpreting estimation results. This indicates a need for caution when evaluating spread. Although standard practice, current empirical estimators may both over- and underestimate spread rate in the simulation.
ContributorsShanafelt, David William (Author) / Fenichel, Eli P (Thesis advisor) / Richards, Timothy (Committee member) / Janssen, Marco (Committee member) / Arizona State University (Publisher)
Created2012
151089-Thumbnail Image.png
Description
Many studies over the past two decades examined the link between climate patterns and discharge, but few have attempted to study the effects of the El Niño Southern Oscillation (ENSO) on localized and watershed specific processes such as nutrient loading in the Southwestern United States. The Multivariate ENSO Index (MEI)

Many studies over the past two decades examined the link between climate patterns and discharge, but few have attempted to study the effects of the El Niño Southern Oscillation (ENSO) on localized and watershed specific processes such as nutrient loading in the Southwestern United States. The Multivariate ENSO Index (MEI) is used to describe the state of the ENSO, with positive (negative) values referring to an El Niño condition (La Niña condition). This study examined the connection between the MEI and precipitation, discharge, and total nitrogen (TN) and total phosphorus (TP) concentrations in the Upper Salt River Watershed in Arizona. Unrestricted regression models (UMs) and restricted regression models (RMs) were used to investigate the relationship between the discharges in Tonto Creek and the Salt River as functions of the magnitude of the MEI, precipitation, and season (winter/summer). The results suggest that in addition to precipitation, the MEI/season relationship is an important factor for predicting discharge. Additionally, high discharge events were associated with high magnitude ENSO events, both El Niño and La Niña. An UM including discharge and season, and a RM (restricting the seasonal factor to zero), were applied to TN and TP concentrations in the Salt River. Discharge and seasonality were significant factors describing the variability in TN in the Salt River while discharge alone was the significant factor describing TP. TN and TP in Roosevelt Lake were evaluated as functions of both discharge and MEI. Some significant correlations were found but internal nutrient cycling as well as seasonal stratification of the water column of the lake likely masks the true relationships. Based on these results, the MEI is a useful predictor of discharge, as well as nutrient loading in the Salt River Watershed through the Salt River and Tonto Creek. A predictive model investigating the effect of ENSO on nutrient loading through discharge can illustrate the effects of large scale climate patterns on smaller systems.
ContributorsSversvold, Darren (Author) / Neuer, Susanne (Thesis advisor) / Elser, James (Committee member) / Fenichel, Eli (Committee member) / Arizona State University (Publisher)
Created2012
151137-Thumbnail Image.png
Description
Though for most of the twentieth century, dogma held that the adult brain was post-mitotic, it is now known that adult neurogenesis is widespread among vertebrates, from fish, amphibians, reptiles and birds to mammals including humans. Seasonal changes in adult neurogenesis are well characterized in the song control system of

Though for most of the twentieth century, dogma held that the adult brain was post-mitotic, it is now known that adult neurogenesis is widespread among vertebrates, from fish, amphibians, reptiles and birds to mammals including humans. Seasonal changes in adult neurogenesis are well characterized in the song control system of song birds, and have been found in seasonally breeding mammals as well. In contrast to more derived vertebrates, such as mammals, where adult neurogenesis is restricted primarily to the olfactory bulb and the dentate gyrus of the hippocampus, neurogenesis is widespread along the ventricles of adult amphibians. I hypothesized that seasonal changes in adult amphibian brain cell proliferation and survival are a potential regulator of reproductive neuroendocrine function. Adult, male American bullfrogs (Rana catesbeiana; aka Lithobates catesbeianus), were maintained in captivity for up to a year under season-appropriate photoperiod. Analysis of hormone levels indicated seasonal changes in plasma testosterone concentration consistent with field studies. Using the thymidine analogue 5-bromo-2-deoxyuridine (BrdU) as a marker for newly generated cells, two differentially regulated aspects of brain cell neogenesis were tracked; that is, proliferation and survival. Seasonal differences were found in BrdU labeling in several brain areas, including the olfactory bulb, medial pallium, nucleus accumbens and the infundibular hypothalamus. Clear seasonal differences were also found in the pars distalis region of the pituitary gland, an important component of neuroendocrine pathways. BrdU labeling was also examined in relation to two neuropeptides important for amphibian reproduction: arginine vasotocin and gonadotropin releasing hormone. No cells co-localized with BrdU and either neuropeptide, but new born cells were found in close proximity to neuropeptide-containing neurons. These data suggest that seasonal differences in brain and pituitary gland cell neogenesis are a potential neuroendocrine regulatory mechanism.
ContributorsMumaw, Luke (Author) / Orchinik, Miles (Thesis advisor) / Deviche, Pierre (Committee member) / Chandler, Douglas (Committee member) / Arizona State University (Publisher)
Created2012
149333-Thumbnail Image.png
Description
Biology textbooks are everybody's business. In accepting the view that texts are created with specific social goals in mind, I examined 127 twentieth-century high school biology textbooks for representations of animal development. Paragraphs and visual representations were coded and placed in one of four scientific literacy categories: descriptive, investigative, nature

Biology textbooks are everybody's business. In accepting the view that texts are created with specific social goals in mind, I examined 127 twentieth-century high school biology textbooks for representations of animal development. Paragraphs and visual representations were coded and placed in one of four scientific literacy categories: descriptive, investigative, nature of science, and human embryos, technology, and society (HETS). I then interpreted how embryos and fetuses have been socially constructed for students. I also examined the use of Haeckel's embryo drawings to support recapitulation and evolutionary theory. Textbooks revealed that publication of Haeckel's drawings was influenced by evolutionists and anti-evolutionists in the 1930s, 1960s, and the 1990s. Haeckel's embryos continue to persist in textbooks because they "safely" illustrate similarities between embryos and are rarely discussed in enough detail to understand comparative embryology's role in the support of evolution. Certain events coincided with changes in how embryos were presented: (a) the growth of the American Medical Association (AMA) and an increase in birth rates (1950s); (b) the Biological Sciences Curriculum Study (BSCS) and public acceptance of birth control methods (1960s); (c) Roe vs. Wade (1973); (d) in vitro fertilization and Lennart Nilsson's photographs (1970s); (e) prenatal technology and fetocentrism (1980s); and (f) genetic engineering and Science-Technology-Society (STS) curriculum (1980s and 1990s). By the end of the twentieth century, changing conceptions, research practices, and technologies all combined to transform the nature of biological development. Human embryos went from a highly descriptive, static, and private object to that of sometimes contentious public figure. I contend that an ignored source for helping move embryos into the public realm is schoolbooks. Throughout the 1900s, authors and publishers accomplished this by placing biology textbook embryos and fetuses in several different contexts--biological, technological, experimental, moral, social, and legal.
ContributorsWellner, Karen L (Author) / Maienschein, Jane (Thesis advisor) / Ellison, Karin D. (Committee member) / Robert, Jason S. (Committee member) / Arizona State University (Publisher)
Created2010
149563-Thumbnail Image.png
Description
This thesis explores the independent effects of the manipulation of rocks into alignments, prehistoric farming, and season on soil properties in two areas with a history of prehistoric agriculture in central Arizona, Pueblo la Plata within the Agua Fria National Monument (AFNM), and an archaeological site north of the Phoenix

This thesis explores the independent effects of the manipulation of rocks into alignments, prehistoric farming, and season on soil properties in two areas with a history of prehistoric agriculture in central Arizona, Pueblo la Plata within the Agua Fria National Monument (AFNM), and an archaeological site north of the Phoenix basin along Cave Creek (CC). Soil properties, annual herbaceous biomass and the physical properties of alignments and surface soils were measured and compared across the landscape, specifically on: 1) agricultural rock alignments that were near the archaeological site 2) geologically formed rock alignments that were located 0.5-1 km away from settlements; and 3) areas both near and far from settlements where rock alignments were absent. At AFNM, relatively well-built rock alignments have altered soil properties and processes while less-intact alignments at CC have left few legacies.
ContributorsTrujillo, Jolene Eve (Author) / Hall, Sharon J (Thesis advisor) / Collins, Scott L. (Committee member) / Spielmann, Katherine A. (Committee member) / Arizona State University (Publisher)
Created2011
149451-Thumbnail Image.png
Description
Phytoplankton comprise the base of the marine food web, and, along with heterotrophic protists, they are key players in the biological pump that transports carbon from the surface to the deep ocean. In the world's subtropical oligotrophic gyres, plankton communities exhibit strong seasonality. Winter storms vent deep water into the

Phytoplankton comprise the base of the marine food web, and, along with heterotrophic protists, they are key players in the biological pump that transports carbon from the surface to the deep ocean. In the world's subtropical oligotrophic gyres, plankton communities exhibit strong seasonality. Winter storms vent deep water into the euphotic zone, triggering a surge in primary productivity in the form of a spring phytoplankton bloom. Although the hydrographic trends of this "boom and bust" cycle have been well studied for decades, community composition and its seasonal and annual variability remains an integral subject of research. It is hypothesized here that proportions of different phytoplankton and protistan taxa vary dramatically between seasons and years, and that picoplankton represent an important component of this community and contributor to carbon in the surface ocean. Monthly samples from the Bermuda Atlantic Time-series Study (BATS) site were analyzed by epifluorescence microscopy, which permits classification by morphology, size, and trophic type. Epifluorescence counts were supplemented with flow cytometric quantification of Synechococcus, Prochlorococcus, and autotrophic pico- and nanoeukaryotes. Results from this study indicate Synechococcus and Prochlorococcus, prymnesiophytes, and hetero- and mixotrophic nano- and dinoflagellates were the major players in the BATS region plankton community. Ciliates, cryptophytes, diatoms, unidentified phototrophs, and other taxa represented rarer groups. Both flow cytometry and epifluorescence microscopy revealed Synechococcus to be most prevalent during the spring bloom. Prymnesiophytes likewise displayed distinct seasonality, with the highest concentrations again being noted during the bloom. Heterotrophic nano- and dinoflagellates, however, were most common in fall and winter. Mixotrophic dinoflagellates, while less abundant than their heterotrophic counterparts, displayed similar seasonality. A key finding of this study was the interannual variability revealed between the two years. While most taxa were more abundant in the first year, prymnesiophytes experienced much greater abundance in the second year bloom. Analyses of integrated carbon revealed further stark contrasts between the two years, both in terms of total carbon and the contributions of different groups. Total integrated carbon varied widely in the first study year but displayed less fluctuation after June 2009, and values were noticeably reduced in the second year.
ContributorsHansen, Amy (Author) / Neuer, Susanne (Thesis advisor) / Krajmalnik-Brown, Rosa (Committee member) / Sommerfeld, Milton (Committee member) / Arizona State University (Publisher)
Created2010
149430-Thumbnail Image.png
Description
As an industrial society, humans have increasingly separated agricultural processes from natural ecosystems. Many areas of the Southwestern US, however, maintain traditional practices that link agricultural systems to the natural environment. One such practice, diverting river water into fields via earthen irrigation canals, allows ditch water to recharge

As an industrial society, humans have increasingly separated agricultural processes from natural ecosystems. Many areas of the Southwestern US, however, maintain traditional practices that link agricultural systems to the natural environment. One such practice, diverting river water into fields via earthen irrigation canals, allows ditch water to recharge groundwater and riparian vegetation to prosper along canal banks. As there is growing interest in managing landscapes for multiple ecosystem services, this study was undertaken to determine if irrigation canals function as an extension of the riparian corridor. I was specifically interested in determining if the processes within semi-arid streams that drive riparian plant community structure are manifested in earthen irrigation ditches. I examined herbaceous and woody vegetation along the middle Verde River, AZ, USA and three adjacent irrigation ditches across six months. I also collected sieved hydrochores--seeds dispersing through water--within ditches and the river twelve times. Results indicate that ditch vegetation was similar to streamside river vegetation in abundance (cover and basal area) due to surface water availability but more diverse than river streamside vegetation due to high heterogeneity. Compositionally, herbaceous vegetation along the ditch was most similar to the river banks, while low disturbance fostered woody vegetation along the ditches similar to high floodplain and river terrace vegetation. Hydrochore richness and abundance within the river was dependent on seasonality and stream discharge, but these relationships were dampened in the ditches. Species-specific strategies of hydrochory, however, did emerge in both systems. Strategies include pulse species, which disperse via hydrochory in strict accordance with their restricted dispersal windows, constant species, which are year round hydrochores, and combination species, which show characteristics of both. There was high overlap in the composition of hydrochores in the two systems, with obligate wetland species abundant in both. Upland species were more seasonally constant and abundant in the ditch water than the river. The consistency of river processes and similarity of vegetation suggest that earthen irrigation ditches do function as an extension of the riparian corridor. Thus, these man-made irrigation ditches should be considered by stakeholders for their multiple ecosystem services.
ContributorsBetsch, Jacqueline Michelle (Author) / Stromberg, Juliet C. (Thesis advisor) / Hall, Sharon J (Committee member) / Merritt, David M. (Committee member) / Arizona State University (Publisher)
Created2010
161614-Thumbnail Image.png
Description
Parabasalia is a phylum of flagellated protists with a large range of cell sizes, spanning from as little as 7 µm in length (e.g. Pentatrichomonas hominis) to well over 300 µm (e.g. Pseudotrichonympha grassii). Many Parabasalia are associated with animals in mutualistic, parasitic, or commensal relationships. The largest

Parabasalia is a phylum of flagellated protists with a large range of cell sizes, spanning from as little as 7 µm in length (e.g. Pentatrichomonas hominis) to well over 300 µm (e.g. Pseudotrichonympha grassii). Many Parabasalia are associated with animals in mutualistic, parasitic, or commensal relationships. The largest Parabasalia species are obligate mutualists of termites, which help to digest lignocellulose. While the specific digestive roles of different protist species are mostly unknown, Parabasalia with different cell sizes are known to inhabit different regions of the termite hindgut. It is currently unclear whether these size differences are driven by selection or drift, but it is well known that cell size correlates with genome size in eukaryotes. Therefore, in order to gain insight into possible selection pressures or mechanisms for cell size increase, genome sizes were estimated for the five Parabasalia species that inhabit the hindgut of Coptotermes formosanus Shiraki. The cell volumes and C-values for the five protist species are 89,190 µm3 and 147 pg in Pseudotrichonympha grassii, 26,679 µm3 and 56 pg in Holomastigotoides hartmanni, 8,985 µm3 and 29 pg in Holomastigotoides minor, 1,996 µm3 and 12 pg in Cononympha leidyi , and 386 µm3 and 6 pg in Cononympha koidzumii. The positive correlation between genome size and cell size was maintained in this group (R2 = 0.76). These genome sizes are much larger than the previously estimated genome sizes of non-termite associated Parabasalia, which spanned 2-fold ranging from 0.088 pg (in Tetratrichomonas gallinarum) to 0.181 pg (in Trichomonas foetus). With these new estimates, the range now spans over 1,500-fold from 0.088 pg to 147 pg in P. grassii, implying potential differences in the level of selective pressures for genome size in termite-associated Parabasalia compared to other protists.
ContributorsMontoya, Samantha (Author) / Gile, Gillian (Thesis advisor) / Wideman, Jeremy (Committee member) / Chouvenc, Thomas (Committee member) / Arizona State University (Publisher)
Created2021
168411-Thumbnail Image.png
Description
As the planet is rapidly urbanizing, understanding the ecological effects of urbanization is a grand challenge for modern biology. For example, increased city temperatures known as the urban heat island effect, disproportionately impact nocturnal taxa and this consideration is widely overlooked. Slight shifts in the thermal microclimate have a cascade

As the planet is rapidly urbanizing, understanding the ecological effects of urbanization is a grand challenge for modern biology. For example, increased city temperatures known as the urban heat island effect, disproportionately impact nocturnal taxa and this consideration is widely overlooked. Slight shifts in the thermal microclimate have a cascade of ramifications that directly impact species density and distribution. Animal behavior is a trait that may explain why some species thrive after urbanization when others go locally extinct. In this study I followed 22 adult females of the western black widow, Latrodectus hesperus, from both urban and undisturbed Sonoran Desert habitats. First, I began looking for differences between urban and desert spiders under field conditions: boldness, voracity, web size and body condition. Both urban and desert spiders were then brought to the laboratory to see how their behavior changed. I found no behavioral differences between urban and desert spiders in the field or the laboratory. I did find that spider behavior differed between the field and the laboratory. Specifically, boldness in the laboratory was significantly lower compared to the field. Voracity was more repeatable in the laboratory versus the field, and boldness was strongly positively correlated with voracity in the laboratory, but not in the field. These behavioral shifts from the field to the laboratory favor the conclusion that black widow behavior is highly plastic and context dependent. Lastly, I monitored web temperature of black widow microhabitat continuously for an entire year using iButton data loggers. I found microhabitat temperatures differences between urban and desert sites were greatest at night and absent during the daytime. I uncovered a seasonal effect with the highest magnitude temperature difference occurring during the springtime. Additionally, behavior was significantly correlated with field temperatures; the boldest spiders come from the warmest webs. However, I found little evidence that temperature predicts spider body condition or voracity, and body condition does not predict its behavioral expression. My results highlight the importance of studying animal behavior to increase understanding of the factors that shape distribution and density in a lethal pest species.
ContributorsClark, Ryan Carter (Author) / Johnson, James C (Thesis advisor) / Bang, Christofer (Thesis advisor) / Sullivan, Brian (Committee member) / Arizona State University (Publisher)
Created2021