Matching Items (4)
Filtering by

Clear all filters

Description
Many organizational course design methodologies feature general guidelines for the chronological and time-management aspects of course design development. Proper course structure and instructional strategy pacing has been shown to facilitate student knowledge acquisition of novel material. These course-scheduling details influencing student learning outcomes implies the need for an effective and

Many organizational course design methodologies feature general guidelines for the chronological and time-management aspects of course design development. Proper course structure and instructional strategy pacing has been shown to facilitate student knowledge acquisition of novel material. These course-scheduling details influencing student learning outcomes implies the need for an effective and tightly coupled component of an instructional module. The Instructional Module Development System, or IMODS, seeks to improve STEM, or ‘science, technology, engineering, and math’, education, by equipping educators with a powerful informational tool that helps guide course design by providing information based on contemporary research about pedagogical methodology and assessment practices. This is particularly salient within the higher-education STEM fields because many instructors come from backgrounds that are more technical and most Ph.Ds. in science fields have traditionally not focused on preparing doctoral candidates to teach. This thesis project aims to apply a multidisciplinary approach, blending educational psychology and computer science, to help improve STEM education. By developing an instructional module-scheduling feature for the Web-based IMODS, Instructional Module Development System, system, we can help instructors plan out and organize their course work inside and outside of the classroom, while providing them with relevant helpful research that will help them improve their courses. This article illustrates the iterative design process to gather background research on pacing of workload and learning activities and their influence on student knowledge acquisition, constructively critique and analyze pre-existing information technology (IT) scheduling tools, synthesize graphical user interface, or GUI, mockups based on the background research, and then implement a functional-working prototype using the IMODs framework.
ContributorsCoomber, Wesley Poblete (Author) / Bansal, Srividya (Thesis director) / Lindquist, Timothy (Committee member) / Software Engineering (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
147947-Thumbnail Image.png
Description

University Devils is a Founders Lab Thesis group looking to find a way for post-secondary institutions to increase the number of and diversity of incoming applications through the utilization of gaming and gaming approaches in the recruitment process while staying low-cost. This propelling question guided the group through their work.

University Devils is a Founders Lab Thesis group looking to find a way for post-secondary institutions to increase the number of and diversity of incoming applications through the utilization of gaming and gaming approaches in the recruitment process while staying low-cost. This propelling question guided the group through their work. The team’s work primarily focused on recruitment efforts at Arizona State University, but the concept can be modified and applied at other post-secondary institutions. The initial research showed that Arizona State University’s recruitment focused on visiting the high schools of prospective students and providing campus tours to interested students. A proposed alternative solution to aid in recruitment efforts through the utilization of gaming was to create an online multiplayer game that prospective students could play from their own homes. The basic premise of the game is that one player is selected to be “the Professor” while the other players are part of “the Students.” To complete the game, The Students must complete a set of tasks while the Professor applies various obstacles to prevent the Students from winning. When a Student completes their objectives, they win and the game ends. The game was created using Unity. The group has completed a proof-of-concept of the proposed game and worked to advertise and market the game to students via social media. The team’s efforts have gained traction and the group continues to work to gain traction and bring the idea to more prospective students.

ContributorsCole, Tyler Phillip (Co-author) / Ouellette, Abigail (Co-author) / Dong, Edmund E. (Co-author) / Byrne, Jared (Thesis director) / Pierce, John (Committee member) / Software Engineering (Contributor) / Department of Finance (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
165594-Thumbnail Image.png
Description

With the recent focus of attention towards remote work and mobile computing, the possibility of taking a powerful workstation wherever needed is enticing. However, even emerging laptops today struggle to compete with desktops in terms of cost, maintenance, and future upgrades. The price point of a powerful laptop is considerably

With the recent focus of attention towards remote work and mobile computing, the possibility of taking a powerful workstation wherever needed is enticing. However, even emerging laptops today struggle to compete with desktops in terms of cost, maintenance, and future upgrades. The price point of a powerful laptop is considerably higher compared to an equally powerful desktop computer, and most laptops are manufactured in a way that makes upgrading parts of the machine difficult or impossible, forcing a complete purchase in the event of failure or a component needing an upgrade. In the case where someone already owns a desktop computer and must be mobile, instead of needing to purchase a second device at full price, it may be possible to develop a low-cost computer that has just enough power to connect to the existing desktop and run all processing there, using the mobile device only as a user interface. This thesis will explore the development of a custom PCB that utilizes a Raspberry Pi Computer Module 4, as well as the development of a fork of the Open Source project Moonlight to stream a host machine's screen to a remote client. This implementation will be compared against other existing remote desktop solutions to analyze it's performance and quality.

ContributorsLathrum, Dylan (Author) / Heinrichs, Robert (Thesis director) / Acuna, Ruben (Committee member) / Jordan, Shawn (Committee member) / Barrett, The Honors College (Contributor) / Software Engineering (Contributor)
Created2022-05
165938-Thumbnail Image.png
Description

This paper will demonstrate that the Agile development process helps to ensure incremental work on an Unreal Engine game project is achieved by presenting a product produced in Unreal Engine along with my experience in utilizing Scrum to facilitate the game’s development. Section 2 discusses project goals and motivations for

This paper will demonstrate that the Agile development process helps to ensure incremental work on an Unreal Engine game project is achieved by presenting a product produced in Unreal Engine along with my experience in utilizing Scrum to facilitate the game’s development. Section 2 discusses project goals and motivations for using Agile, using Unreal Engine, and for the choice of genre in the final product. Section 3 contextualizes these goals by presenting the history of Unreal Engine, the novel applications of Unreal Engine, and the use of Unreal Engine in the development of Heady Stuff. Section 4 presents findings from the project’s development by describing my use of Agile and by presenting the steps taken in learning Unreal Engine. Section 4 continues by highlighting important development considerations in the use of Blueprints, C++, and HLSL in Unreal Engine. The section ends with the presentation of project feedback, its incorporation in the final product, and the resources used to assist development. Section 5 compares the workflow, help resources, and applications of Unreal Engine with those of Unity, another highly popular game engine. Lastly, Section 6 performs a post-mortem on the overall development process by considering how well Agile development processes were upheld along with how much of the original plans in the Design Document was present in the final product. Additionally, the section presents the major challenges encountered during project development. These challenges will help in proposing possible best practices for game development in Unreal Engine.

ContributorsHreshchyshyn, Jacob (Author) / Acuna, Ruben (Thesis director) / Hentges, John (Committee member) / Barrett, The Honors College (Contributor) / Software Engineering (Contributor) / Computing and Informatics Program (Contributor)
Created2022-05