Matching Items (6)
Filtering by

Clear all filters

150454-Thumbnail Image.png
Description
Despite the minor differences in the inclusiveness of the word, there is a general assumption among the scientific community that the 'pursuit of knowledge' is the most fundamental element in defining the word 'science'. However, a closer examination of how science is being conducted in modern-day South Korea reveals a

Despite the minor differences in the inclusiveness of the word, there is a general assumption among the scientific community that the 'pursuit of knowledge' is the most fundamental element in defining the word 'science'. However, a closer examination of how science is being conducted in modern-day South Korea reveals a value system starkly different from the value of knowledge. By analyzing the political discourse of the South Korean policymakers, mass media, and government documents, this study examines the definition of science in South Korea. The analysis revealed that the Korean science, informed by the cultural, historical, and societal contexts, is largely focused on the values of national economic prosperity, international competitiveness, and international reputation of the country, overshadowing other values like the pursuit of knowledge or even individual rights. The identification of the new value system in South Korean science deviating from the traditional definition of science implies that there must be other definitions of science that also deviates, and that even in the Western world, the definition of science may yield similar deviations upon closer examination. The compatibility of the South Korean brand of science to the international scientific community also implies that a categorical quality is encompassing these different contextual definitions of science.
ContributorsHyun, Byunghun (Author) / Hurlbut, Ben (Thesis advisor) / Maienschein, Jane (Committee member) / Ellison, Karin (Committee member) / Arizona State University (Publisher)
Created2011
156452-Thumbnail Image.png
Description
Guided by Tinto’s Theory of College Student Departure, I conducted a set of five studies to identify factors that influence students’ social integration in college science active learning classes. These studies were conducted in large-enrollment college science courses and some were specifically conducted in undergraduate active learning biology courses.

Guided by Tinto’s Theory of College Student Departure, I conducted a set of five studies to identify factors that influence students’ social integration in college science active learning classes. These studies were conducted in large-enrollment college science courses and some were specifically conducted in undergraduate active learning biology courses. Using qualitative and quantitative methodologies, I identified how students’ identities, such as their gender and LGBTQIA identity, and students’ perceptions of their own intelligence influence their experience in active learning science classes and consequently their social integration in college. I also determined factors of active learning classrooms and instructor behaviors that can affect whether students experience positive or negative social integration in the context of active learning. I found that students’ hidden identities, such as the LGBTQIA identity, are more relevant in active learning classes where students work together and that the increased relevance of one’s identity can have a positive and negative impact on their social integration. I also found that students’ identities can predict their academic self-concept, or their perception of their intelligence as it compares to others’ intelligence in biology, which in turn predicts their participation in small group-discussion. While many students express a fear of negative evaluation, or dread being evaluated negatively by others when speaking out in active learning classes, I identified that how instructors structure group work can cause students to feel more or less integrated into the college science classroom. Lastly, I identified tools that instructors can use, such as name tents and humor, which can positive affect students’ social integration into the college science classroom. In sum, I highlight inequities in students’ experiences in active learning science classrooms and the mechanisms that underlie some of these inequities. I hope this work can be used to create more inclusive undergraduate active learning science courses.
ContributorsCooper, Katelyn M (Author) / Brownell, Sara E (Thesis advisor) / Stout, Valerie (Committee member) / Collins, James (Committee member) / Orchinik, Miles (Committee member) / Zheng, Yi (Committee member) / Arizona State University (Publisher)
Created2018
136176-Thumbnail Image.png
Description
Joseph Rotblat (1908-2005) was the only physicist to leave the Manhattan Project for moral reasons before its completion. He would spend the rest of his life advocating for nuclear disarmament. His activities for disarmament resulted in the formation, in 1957, of the Pugwash conferences, which emerged as the leading global

Joseph Rotblat (1908-2005) was the only physicist to leave the Manhattan Project for moral reasons before its completion. He would spend the rest of his life advocating for nuclear disarmament. His activities for disarmament resulted in the formation, in 1957, of the Pugwash conferences, which emerged as the leading global forum to advance limits on nuclear weapons during the Cold War. Rotblat's efforts, and the activities of Pugwash, resulted in both being awarded the Nobel Peace Prize in 1995. Rotblat is a central figure in the global history of resistance to the spread of nuclear weapons. He also was an important figure in the emergence, after World War II, of a counter-movement to introduce new social justifications for scientific research and new models for ethics and professionalism among scientists. Rotblat embodies the power of the individual scientist to say "no" and thus, at least individually, put limits of conscience on his or her scientific activity. This paper explores the political and ethical choices scientists make as part of their effort to behave responsibly and to influence the outcomes of their work. By analyzing three phases of Rotblat's life, I demonstrate how he pursued his ideal of beneficial science, or science that appears to benefit humanity. The three phases are: (1) his decision to leave the Manhattan Project in 1944, (2) his role in the creation of Pugwash in 1957 and his role in the rise of the organization into international prominence and (3) his winning the Nobel Peace Prize in 1995. These three phases of Rotblat's life provide a singular window of the history of nuclear weapons and the international movement for scientific responsibility in the 50 years since the bombing of Hiroshima in 1945. While this paper does not provide a complete picture of Rotblat's life and times, I argue that his experiences shed important light on the difficult question of the individual responsibility of scientists.
ContributorsEvans, Alison Dawn (Author) / Zachary, Gregg (Thesis director) / Hurlbut, Ben (Committee member) / Francis, Sybil (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / School of Historical, Philosophical and Religious Studies (Contributor)
Created2015-05
149609-Thumbnail Image.png
Description
This study examines the effect of the translation of traditional scientific vocabulary into plain English, a process referred to as Anglicization, on student learning in the context of introductory microbiology instruction. Data from Anglicized and Classical-vocabulary lab sections were collected. Data included exam scores as well as pre and post-course

This study examines the effect of the translation of traditional scientific vocabulary into plain English, a process referred to as Anglicization, on student learning in the context of introductory microbiology instruction. Data from Anglicized and Classical-vocabulary lab sections were collected. Data included exam scores as well as pre and post-course surveys on reasoning skills, impressions of biology, science and the course, and microbiology knowledge. Students subjected to Anglicized instruction performed significantly better on exams that assessed their abilities to apply and analyze knowledge from the course, and gained similar amounts of knowledge during the course when compared to peers instructed with standard vocabulary. Their performance in upper-level courses was also better than that of their traditionally educated peers. Hypotheses related to the effect are presented and evaluated; implications for instruction are discussed.
ContributorsRichter, Emily (Author) / Lawson, Anton (Thesis advisor) / Stout, Valerie (Committee member) / Haydel, Shelley (Committee member) / Atkinson, Robert (Committee member) / Arizona State University (Publisher)
Created2011
137868-Thumbnail Image.png
Description
Many high school students demonstrate an overall lack of interest in science. Traditional teaching methodologies seem to be unsuccessful at engaging students \u2014 one explanation is that students often interpret what they learn in school as irrelevant to their personal lives. Active learning and case based learning methodologies seem to

Many high school students demonstrate an overall lack of interest in science. Traditional teaching methodologies seem to be unsuccessful at engaging students \u2014 one explanation is that students often interpret what they learn in school as irrelevant to their personal lives. Active learning and case based learning methodologies seem to be more effective at promoting interest and understanding of scientific principles. The purpose of our research was to implement a lab with updated teaching methodologies that included an active learning and case based curriculum. The lab was implemented in two high school honors biology classes with the specific goals of: significantly increasing students' interest in science and its related fields; increasing students' self-efficacy in their ability to understand and interpret the traditional process of the scientific method; and increasing this traditional process of objectively understanding the scientific method. Our results indicated that interest in science and its related fields (p = .011), students' self-efficacy in understanding the scientific method (p = .000), and students' objective understanding of the scientific method (p = .000) statistically significantly increased after the lab was administered; however, our results may not be as meaningful as the p-values imply due to the scale of our assessment.
ContributorsCotten, Kathryn (Author) / Hoffner, Kristin (Thesis director) / Stout, Valerie (Committee member) / Lynskey, Jim (Committee member) / Barrett, The Honors College (Contributor) / College of Health Solutions (Contributor)
Created2012-12
135990-Thumbnail Image.png
Description
In 1996, President Clinton ordered the formation of the Advisory Committee on Human Radiation Experiments (ACHRE), which undertook to evaluate the morality of a myriad of secret and publicized radiation experiments ranging from 1944 to 1974. The goal of this thesis is to analyze the ways in which that committee

In 1996, President Clinton ordered the formation of the Advisory Committee on Human Radiation Experiments (ACHRE), which undertook to evaluate the morality of a myriad of secret and publicized radiation experiments ranging from 1944 to 1974. The goal of this thesis is to analyze the ways in which that committee formed moral evaluations and the extent to which its strategies related to a broader historical and philosophical discourse. Here I attempt to describe two specific techniques of simplification the committee deploys in order to make a retrospective moral analysis possible. Although the techniques comprise specific problems, frameworks, subjective perspectives, and conceptual links, their unifying principle is the field of choices the techniques produce. In the first technique I outline, I argue that by focusing on the problem of historical relativism, the committee gains a platform through which it would be granted flexibility in making a distinction between moral wrongdoing and blameworthiness. In the second technique of simplification I outline, I argue that the committee's incorporation of a principle to reduce uncertainty as an ethical aim allow it to establish new ways to reconcile scientific aims with moral responsibility. In addition to describing the structure of these techniques, I also demonstrate how they relate to the specific experiments the analysts aim to evaluate, using both the ACHRE experiments as well as the Nuremberg Trial experiments as my examples. My hope is not to show why a given committee made a particular moral evaluation, or to say whether a decision was right or wrong, but rather to illustrate how certain techniques open up a field of choices that allow moral analysts to form retrospective moral judgments.
ContributorsCirjan, Cristian (Author) / Hurlbut, Ben (Thesis director) / Humphrey, Ted (Committee member) / Zachary, Gregg (Committee member) / Barrett, The Honors College (Contributor)
Created2015-05