Matching Items (8)
Filtering by

Clear all filters

148202-Thumbnail Image.png
Description

Heron Lodge is the hybrid product of sciences, (pre) medicine, and the humanities throughout four years of an undergraduate degree in Medical Studies.

ContributorsLu, Emilie Joy (Author) / Dombrowski, Rosemarie (Thesis director) / Viren, Sarah (Committee member) / College of Health Solutions (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
131397-Thumbnail Image.png
Description
Serotonin 2A receptor (5-HT2AR) levels are decreased in the brains of schizophrenia patients. This phenomenon is modeled in mice that lack the transcription factor Egr3. The head-twitch response (HTR) is a behavioral assay used to assess the physiological function of 5-HT2ARs. However, current quantification methods are time

Serotonin 2A receptor (5-HT2AR) levels are decreased in the brains of schizophrenia patients. This phenomenon is modeled in mice that lack the transcription factor Egr3. The head-twitch response (HTR) is a behavioral assay used to assess the physiological function of 5-HT2ARs. However, current quantification methods are time consuming and prone to inter-rater variability. Here, we demonstrate the validity and reliability of an automated head-twitch system to quantify HTRs of Egr3-/- mice.
ContributorsOzols, Annika Biruta (Author) / Lisenbee, Cayle S. (Thesis director) / Gallitano, Amelia L. (Committee member) / College of Health Solutions (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
Description

This thesis explores the ethical implications of using facial recognition artificial intelligence (AI) technologies in medicine, with a focus on both the opportunities and challenges presented by the use of this technology in the diagnosis and treatment of rare genetic disorders. We highlight the positive outcomes of using AI in

This thesis explores the ethical implications of using facial recognition artificial intelligence (AI) technologies in medicine, with a focus on both the opportunities and challenges presented by the use of this technology in the diagnosis and treatment of rare genetic disorders. We highlight the positive outcomes of using AI in medicine, such as accuracy and efficiency in diagnosing rare genetic disorders, while also examining the ethical concerns including bias, misdiagnosis, the issues it may cause within patient-clinician relationships, misuses outside of medicine, and privacy. This paper draws on the opinions of medical providers and other professionals outside of medicine, which finds that while many are excited about the potential of AI to improve medicine, concerns remain about the ethical implications of these technologies. We discuss current legislation controlling the use of AI in healthcare and its ambiguity. Overall, this thesis highlights the need for further research and public discourse to address the ethical implications of using facial recognition and AI technologies in medicine, while also providing recommendations for its future use in medicine.

ContributorsVargas Jordan, Anna (Author) / Kohlenberg, Maiya (Co-author) / Martin, Thomas (Thesis director) / Sellner, Erin (Committee member) / Barrett, The Honors College (Contributor) / College of Health Solutions (Contributor)
Created2023-05
166212-Thumbnail Image.png
Description

Our work explores a fascinating experiment in physics and science, the Double-Slit Experiment. We cover the mystery of this experiment, representing the wave and particle nature of photons, electrons, and quantum elements. We recount the history of quantum physics, an unknown field for most people due to its detachment from

Our work explores a fascinating experiment in physics and science, the Double-Slit Experiment. We cover the mystery of this experiment, representing the wave and particle nature of photons, electrons, and quantum elements. We recount the history of quantum physics, an unknown field for most people due to its detachment from the world we see. Finally, we explore the capability of the human eye to detect light in its quantum state, closing the gap between us and quantum physics.

ContributorsAndersen, Liam (Author) / Bujan, Reynaldo R. (Co-author) / Foy, Joseph (Thesis director) / Martin, Thomas (Committee member) / Barrett, The Honors College (Contributor) / College of Health Solutions (Contributor)
Created2022-05
166213-Thumbnail Image.png
Description

Our work explores a fascinating experiment in physics and science, the Double-Slit Experiment. We cover the mystery of this experiment, representing the wave and particle nature of photons, electrons, and quantum elements. We recount the history of quantum physics, an unknown field for most people due to its detachment from

Our work explores a fascinating experiment in physics and science, the Double-Slit Experiment. We cover the mystery of this experiment, representing the wave and particle nature of photons, electrons, and quantum elements. We recount the history of quantum physics, an unknown field for most people due to its detachment from the world we see. Finally, we explore the capability of the human eye to detect light in its quantum state, closing the gap between us and quantum physics.

ContributorsBujan, Reynaldo R. (Author) / Andersen, Liam (Co-author) / Foy, Joseph (Thesis director) / Martin, Thomas (Committee member) / Barrett, The Honors College (Contributor) / College of Health Solutions (Contributor)
Created2022-05
Description
Coronary artery disease (CAD) is one of the most diagnosed heart diseases globally, affecting about 5% of adults over the age of twenty[1]. Lifestyle changes can positively impact risk of developing CAD and are especially important for individuals with high genetic risk [1]. In this study, we sought to predict

Coronary artery disease (CAD) is one of the most diagnosed heart diseases globally, affecting about 5% of adults over the age of twenty[1]. Lifestyle changes can positively impact risk of developing CAD and are especially important for individuals with high genetic risk [1]. In this study, we sought to predict the likelihood of developing CAD using genetic, demographic, and clinical variables. Leveraging genetic and clinical data from the UK Biobank on over 500,000 individuals, we classified and separated 500 genetically similar individuals to a target individual from another 500 genetically dissimilar individuals. This process was repeated for 10 target individuals as a proof-of-concept. Then, CAD-related variables were used and these include age, relevant clinical factors, and polygenic risk score to train models for predicting CAD status for the 500 genetically similar and 500 genetically dissimilar groups, and determine which group predicts the likelihood of CAD more accurately. To compute genetic similarity to the target individuals we used the Mahalanobis distance. To reduce the heterogeneity between sexes and races, the studies were restricted to British male Caucasians. The models using the more similar individuals demonstrated better predictive performance. The area under the receiver operating characteristic curve (AUC) was found to be significantly higher for the ‘similar’ rather than the ’dissimilar’ groups, indicating better predictive capability (AUC=0.67 vs. 0.65, respectively; p-value<0.05). These findings support the potential of precision prevention strategies, since one should build predictive models of disease for any one target individual from more similar individuals to that target even within an otherwise homogenous group of individuals (e.g., British Caucasians). Although intuitive, such practices are not done routinely. Further validation and exploration of additional predictors are warranted to enhance the predictive accuracy and applicability of the model.
ContributorsPandari, Sadhana (Author) / Ghassamzadeh, Hassan (Thesis director) / Scotch, Matthew (Committee member) / Barrett, The Honors College (Contributor) / College of Health Solutions (Contributor)
Created2024-05
186805-Thumbnail Image.png
Description

Computational and systems biology are rapidly growing fields of academic study, but unfamiliar researchers are impeded by a lack of accessible, programming-optional, modelling tools. To address this gap, I developed BioSSA, a web framework built on JavaScript and D3.js which allows users to explore a small library of curated biophysical

Computational and systems biology are rapidly growing fields of academic study, but unfamiliar researchers are impeded by a lack of accessible, programming-optional, modelling tools. To address this gap, I developed BioSSA, a web framework built on JavaScript and D3.js which allows users to explore a small library of curated biophysical models as well as create and simulate their own reaction network. The mathematical foundation of BioSSA is the Stochastic Gillespie Algorithm, which is widely used in mathematical modeling and biology to represent chemical reaction systems. SGA is particularly well-suited as an introductory modelling tool because of its flexibility, broad applicability, and its ability to numerically approximate systems when analytical solutions are not available. BioSSA is freely available to the community and further improvements are planned.

ContributorsRamirez, Daniel (Author) / Ghasemzadeh, Hassan (Thesis director) / Liu, Li (Committee member) / Lu, Mingyang (Committee member) / Barrett, The Honors College (Contributor) / College of Health Solutions (Contributor)
Created2023-05
137868-Thumbnail Image.png
Description
Many high school students demonstrate an overall lack of interest in science. Traditional teaching methodologies seem to be unsuccessful at engaging students \u2014 one explanation is that students often interpret what they learn in school as irrelevant to their personal lives. Active learning and case based learning methodologies seem to

Many high school students demonstrate an overall lack of interest in science. Traditional teaching methodologies seem to be unsuccessful at engaging students \u2014 one explanation is that students often interpret what they learn in school as irrelevant to their personal lives. Active learning and case based learning methodologies seem to be more effective at promoting interest and understanding of scientific principles. The purpose of our research was to implement a lab with updated teaching methodologies that included an active learning and case based curriculum. The lab was implemented in two high school honors biology classes with the specific goals of: significantly increasing students' interest in science and its related fields; increasing students' self-efficacy in their ability to understand and interpret the traditional process of the scientific method; and increasing this traditional process of objectively understanding the scientific method. Our results indicated that interest in science and its related fields (p = .011), students' self-efficacy in understanding the scientific method (p = .000), and students' objective understanding of the scientific method (p = .000) statistically significantly increased after the lab was administered; however, our results may not be as meaningful as the p-values imply due to the scale of our assessment.
ContributorsCotten, Kathryn (Author) / Hoffner, Kristin (Thesis director) / Stout, Valerie (Committee member) / Lynskey, Jim (Committee member) / Barrett, The Honors College (Contributor) / College of Health Solutions (Contributor)
Created2012-12