Matching Items (7)
Filtering by

Clear all filters

148217-Thumbnail Image.png
Description

The COVID-19 Pandemic has provided a challenge for educators to create virtual learning materials that are engaging and impactful during times of high stress and isolation. In this creative project, I explore the variety of virtual tools and web applications from Esri by creating a Story Map on the Verde

The COVID-19 Pandemic has provided a challenge for educators to create virtual learning materials that are engaging and impactful during times of high stress and isolation. In this creative project, I explore the variety of virtual tools and web applications from Esri by creating a Story Map on the Verde River Watershed. This Story Map is intended for an audience of students in late middle school and early high school but can be a resource to teachers for a wider age range. The integration of interactive technology and virtual tools in educational practices is likely to continue past the immediate circumstances of the COVID-19 pandemic. The purpose of this Story Map is to showcase one of the many uses for geospatial web applications beyond the immediate realm of GIS.

ContributorsTueller, Margaret (Author) / Frazier, Amy (Thesis director) / Dorn, Ron (Committee member) / School of Geographical Sciences and Urban Planning (Contributor, Contributor, Contributor) / Division of Teacher Preparation (Contributor) / The Design School (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
150280-Thumbnail Image.png
Description
Climate change has the potential to affect vegetation via changes in temperature and precipitation. In the semi-arid southwestern United States, heightened temperatures will likely lead to accelerated groundwater pumping to meet human needs, and altered storm patterns may lead to changes in flood regimes. All of these hydrologic changes have

Climate change has the potential to affect vegetation via changes in temperature and precipitation. In the semi-arid southwestern United States, heightened temperatures will likely lead to accelerated groundwater pumping to meet human needs, and altered storm patterns may lead to changes in flood regimes. All of these hydrologic changes have the potential to alter riparian vegetation. This research, consisting of two papers, examines relationships between hydrology and riparian vegetation along the Verde River in central Arizona, from applied and theoretical perspectives. One paper investigates how dominance of tree and shrub species and cover of certain functional groups change along hydrologic gradients. The other paper uses the Verde River flora along with that river's flood and moisture gradients to answer the question of whether functional groups can be defined universally. Drying of the Verde River would lead to a shift from cottonwood-willow streamside forest to more drought adapted desert willow or saltcedar, a decline in streamside marsh species, and decreased species richness. Effects drying will have on one dominant forest tree, velvet ash, is unclear. Increase in the frequency of large floods would potentially increase forest density and decrease average tree age and diameter. Correlations between functional traits of Verde River plants and hydrologic gradients are consistent with "leaf economics," or the axis of resource capture, use, and release, as the primary strategic trade-off for plants. This corresponds to the competitor-stress tolerator gradient in Grime's life history strategy theory. Plant height was also a strong indicator of hydrologic condition, though it is not clear from the literature if plant height is independent enough of leaf characteristics on a global scale to be considered a second axis. Though the ecohydrologic relationships are approached from different perspectives, the results of the two papers are consistent if interpreted together. The species that are currently dominant in the near-channel Verde River floodplain are tall, broad-leaf trees, and the species that are predicted to become more dominant in the case of the river drying are shorter trees or shrubs with smaller leaves. These results have implications for river and water management, as well as theoretical ecology.
ContributorsHazelton, Andrea Florence (Author) / Stromberg, Juliet C. (Thesis advisor) / Schmeeckle, Mark W (Committee member) / Franklin, Janet (Committee member) / Arizona State University (Publisher)
Created2011
149430-Thumbnail Image.png
Description
As an industrial society, humans have increasingly separated agricultural processes from natural ecosystems. Many areas of the Southwestern US, however, maintain traditional practices that link agricultural systems to the natural environment. One such practice, diverting river water into fields via earthen irrigation canals, allows ditch water to recharge

As an industrial society, humans have increasingly separated agricultural processes from natural ecosystems. Many areas of the Southwestern US, however, maintain traditional practices that link agricultural systems to the natural environment. One such practice, diverting river water into fields via earthen irrigation canals, allows ditch water to recharge groundwater and riparian vegetation to prosper along canal banks. As there is growing interest in managing landscapes for multiple ecosystem services, this study was undertaken to determine if irrigation canals function as an extension of the riparian corridor. I was specifically interested in determining if the processes within semi-arid streams that drive riparian plant community structure are manifested in earthen irrigation ditches. I examined herbaceous and woody vegetation along the middle Verde River, AZ, USA and three adjacent irrigation ditches across six months. I also collected sieved hydrochores--seeds dispersing through water--within ditches and the river twelve times. Results indicate that ditch vegetation was similar to streamside river vegetation in abundance (cover and basal area) due to surface water availability but more diverse than river streamside vegetation due to high heterogeneity. Compositionally, herbaceous vegetation along the ditch was most similar to the river banks, while low disturbance fostered woody vegetation along the ditches similar to high floodplain and river terrace vegetation. Hydrochore richness and abundance within the river was dependent on seasonality and stream discharge, but these relationships were dampened in the ditches. Species-specific strategies of hydrochory, however, did emerge in both systems. Strategies include pulse species, which disperse via hydrochory in strict accordance with their restricted dispersal windows, constant species, which are year round hydrochores, and combination species, which show characteristics of both. There was high overlap in the composition of hydrochores in the two systems, with obligate wetland species abundant in both. Upland species were more seasonally constant and abundant in the ditch water than the river. The consistency of river processes and similarity of vegetation suggest that earthen irrigation ditches do function as an extension of the riparian corridor. Thus, these man-made irrigation ditches should be considered by stakeholders for their multiple ecosystem services.
ContributorsBetsch, Jacqueline Michelle (Author) / Stromberg, Juliet C. (Thesis advisor) / Hall, Sharon J (Committee member) / Merritt, David M. (Committee member) / Arizona State University (Publisher)
Created2010
133854-Thumbnail Image.png
Description
The spread of urbanization leads to habitat fragmentation and deterioration and changes the composition of ecosystems for species all over the world. Different groups of organisms are impacted differently, and insects have experienced loss in diversity and abundance due to changing environmental factors. Here, I collected seed beetles across 12

The spread of urbanization leads to habitat fragmentation and deterioration and changes the composition of ecosystems for species all over the world. Different groups of organisms are impacted differently, and insects have experienced loss in diversity and abundance due to changing environmental factors. Here, I collected seed beetles across 12 urban and rural sites in Phoenix, Arizona, to analyze the effects of urbanization and habitat variation on beetle diversity and abundance. I found that urbanization, host tree origin, and environmental factors such as tree diversity and density had no impact on overall beetle diversity and abundance. Beetles were found to have higher density on hosts with a higher density of pods. In assessing individual beetle species, some beetles exhibited higher density in rural sites with native trees, and some were found more commonly on nonnative tree species. The observed differences in beetle density demonstrate the range of effects urbanization and environmental features can have on insect species. By studying ecosystem interactions alongside changing environments, we can better predict the role urbanization and human development can have on different organisms.
ContributorsPaduano, Gabrielle (Author) / Savalli, Udo (Thesis director) / Sweat, Ken (Committee member) / Division of Teacher Preparation (Contributor) / School of Mathematical and Natural Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134173-Thumbnail Image.png
Description
In an effort to combat the lack of diversity in Children's Literature, this project displays a piece of literature titled Stories & Stages: A Tale of Two Sisters, in the form of a children's chapter book for a middle grade audience. Focusing on characters of a Hispanic background without relying

In an effort to combat the lack of diversity in Children's Literature, this project displays a piece of literature titled Stories & Stages: A Tale of Two Sisters, in the form of a children's chapter book for a middle grade audience. Focusing on characters of a Hispanic background without relying on stereotypes or false characterizations, the novel works to inspire young minds and reflect a true representation of the world children are living in. This is done using research on different aspects of Children's Literature, including: the definition of children's literature, diversity, girlhood, and sibling relationships. This research provides the basis for the project, as does personal experience and background. Following the novel is a recording of the background research involved and a documentations of the creative process. Keywords: Children's Literature, Diversity
ContributorsFlores, Abriana Lorraine (Author) / Elliott, Lisa (Thesis director) / Haddy, Lana (Committee member) / Division of Teacher Preparation (Contributor) / Department of English (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
153912-Thumbnail Image.png
Description
Stream flow permanence plays a critical role in determining floristic composition, abundance, and diversity in the Sonoran Desert, but questions remain about the effects of stream flow permanence on butterfly composition, abundance, and diversity. Understanding the effects of flow permanence on butterflies and relevant subsets of butterflies (such as butterflies

Stream flow permanence plays a critical role in determining floristic composition, abundance, and diversity in the Sonoran Desert, but questions remain about the effects of stream flow permanence on butterfly composition, abundance, and diversity. Understanding the effects of flow permanence on butterflies and relevant subsets of butterflies (such as butterflies whose host plants are present) and comparing them to these same effects on plants and relevant subsets of plants (such as butterfly nectar plants and larval host plants) provided insight into pollinator and riparian conservation and restoration.

I surveyed four Sonoran desert stream sites, and found significant relationships between flow permanence and plant and butterfly species richness and abundance, as well as strong relationships between plant and butterfly abundance and between plant and butterfly species richness. Most notably, my results pointed to hosted butterflies as a break-out category of butterflies which may more clearly delineate ecological relationships between butterfly and plant abundance and diversity along Sonoran Desert streams; this can inform conservation decisions. Managing for hosted (resident) butterflies will necessarily entail managing for the presence of surface water, nectar forage, varying levels of canopy cover, and plant, nectar plant, and host plant diversity since the relationships between hosted butterfly species richness and/or abundance and all of these variables were significant, both statistically and ecologically.
ContributorsButler, Lane (Author) / Stromberg, Juliet C. (Thesis advisor) / Makings, Elizabeth (Committee member) / Pearson, David L (Committee member) / Boggess, May (Committee member) / Buchmann, Stephen (Committee member) / Arizona State University (Publisher)
Created2015
153990-Thumbnail Image.png
Description
The Upper Verde River of central Arizona flows through a landscape of complex geology at the meeting of seven biotic communities and three physiographic provinces. This has resulted in notably diverse flora and fauna and a hub of rare and endemic plant species. The river has sustained cultures since pre-history,

The Upper Verde River of central Arizona flows through a landscape of complex geology at the meeting of seven biotic communities and three physiographic provinces. This has resulted in notably diverse flora and fauna and a hub of rare and endemic plant species. The river has sustained cultures since pre-history, however current regional water use is predicted to diminish streamflow over the next century. Prior to this project, no floristic inventory had been conducted along any section of the Verde. The purpose of this study was to develop a Flora of the Upper Verde River, with the goals of documenting rare and endemic species, the composition and abundance of wetland plants, and the factors shaping plant diversity in the region.

I made a total of 1856 collections and reviewed past collections to produce a checklist of 729 vascular plant taxa in 403 genera and 98 families. The most species-rich family is the Poaceae, followed by Asteraceae and Fabaceae. The flora includes 159 wetland taxa, 47 endemics, and 26 taxa of conservation concern, eight of which are Federally listed. Several new populations were found in these categories and of rarely-collected taxa including one state record, three county records and several range extensions. I report on the local status of several endemics, wetland taxa with limited distributions, and relict populations of a tepary bean (Phaseolus acutifolius) that were likely transported to the region and cultivated by pre-Columbian cultures. I categorize thirteen distinct plant communities, the most abundant being Pinyon/Juniper Woodland, Chihuahuan/Apacherian Scrub, and Riparian Deciduous Forest.

Four primary factors influence floristic diversity of the Upper Verde region: 1) a location at the junction of three physiographic and floristic provinces—represented by co-occurrence of species with affinities to the Sonoran, Intermountain and Madrean regions, 2) geologic diversity—as distinct groups of species are associated with particular geologic types, 3) topographic and habitat complexity—allowing species adapted to disparate environments to co-occur, and 4) human introductions—since over 15% of the flora is composed of introduced species from Eurasia and several taxa were introduced to the region and cultivated by pre-Columbian cultures.
ContributorsCoburn, Francis S (Author) / Stromberg, Juliet C. (Thesis advisor) / Landrum, Leslie R (Thesis advisor) / Makings, Elizabeth (Committee member) / Fertig, Walter F (Committee member) / Arizona State University (Publisher)
Created2015