Matching Items (6)
Filtering by

Clear all filters

150289-Thumbnail Image.png
Description
A primary motivation of research in photovoltaic technology is to obtain higher efficiency photovoltaic devices at reduced cost of production so that solar electricity can be cost competitive. The majority of photovoltaic technologies are based on p-n junction, with efficiency potential being much lower than the thermodynamic limits of individual

A primary motivation of research in photovoltaic technology is to obtain higher efficiency photovoltaic devices at reduced cost of production so that solar electricity can be cost competitive. The majority of photovoltaic technologies are based on p-n junction, with efficiency potential being much lower than the thermodynamic limits of individual technologies and thereby providing substantial scope for further improvements in efficiency. The thesis explores photovoltaic devices using new physical processes that rely on thin layers and are capable of attaining the thermodynamic limit of photovoltaic technology. Silicon heterostructure is one of the candidate technologies in which thin films induce a minority carrier collecting junction in silicon and the devices can achieve efficiency close to the thermodynamic limits of silicon technology. The thesis proposes and experimentally establishes a new theory explaining the operation of silicon heterostructure solar cells. The theory will assist in identifying the optimum properties of thin film materials for silicon heterostructure and help in design and characterization of the devices, along with aiding in developing new devices based on this technology. The efficiency potential of silicon heterostructure is constrained by the thermodynamic limit (31%) of single junction solar cell and is considerably lower than the limit of photovoltaic conversion (~ 80 %). A further improvement in photovoltaic conversion efficiency is possible by implementing a multiple quasi-fermi level system (MQFL). A MQFL allows the absorption of sub band gap photons with current being extracted at a higher band-gap, thereby allowing to overcome the efficiency limit of single junction devices. A MQFL can be realized either by thin epitaxial layers of alternating higher and lower band gap material with nearly lattice matched (quantum well) or highly lattice mismatched (quantum dot) structure. The thesis identifies the material combination for quantum well structure and calculates the absorption coefficient of a MQFl based on quantum well. GaAsSb (barrier)/InAs(dot) was identified as a candidate material for MQFL using quantum dot. The thesis explains the growth mechanism of GaAsSb and the optimization of GaAsSb and GaAs heterointerface.
ContributorsGhosha, Kuṇāla (Author) / Bowden, Stuart (Thesis advisor) / Honsberg, Christiana (Thesis advisor) / Vasileska, Dragica (Committee member) / Goodnick, Stephen (Committee member) / Arizona State University (Publisher)
Created2011
151142-Thumbnail Image.png
Description
This dissertation addresses challenges pertaining to multi-junction (MJ) solar cells from material development to device design and characterization. Firstly, among the various methods to improve the energy conversion efficiency of MJ solar cells using, a novel approach proposed recently is to use II-VI (MgZnCd)(SeTe) and III-V (AlGaIn)(AsSb) semiconductors lattice-matched on

This dissertation addresses challenges pertaining to multi-junction (MJ) solar cells from material development to device design and characterization. Firstly, among the various methods to improve the energy conversion efficiency of MJ solar cells using, a novel approach proposed recently is to use II-VI (MgZnCd)(SeTe) and III-V (AlGaIn)(AsSb) semiconductors lattice-matched on GaSb or InAs substrates for current-matched subcells with minimal defect densities. CdSe/CdTe superlattices are proposed as a potential candidate for a subcell in the MJ solar cell designs using this material system, and therefore the material properties of the superlattices are studied. The high structural qualities of the superlattices are obtained from high resolution X-ray diffraction measurements and cross-sectional transmission electron microscopy images. The effective bandgap energies of the superlattices obtained from the photoluminescence (PL) measurements vary with the layer thicknesses, and are smaller than the bandgap energies of either the constituent material. Furthermore, The PL peak position measured at the steady state exhibits a blue shift that increases with the excess carrier concentration. These results confirm a strong type-II band edge alignment between CdSe and CdTe. The valence band offset between unstrained CdSe and CdTe is determined as 0.63 eV±0.06 eV by fitting the measured PL peak positions using the Kronig-Penney model. The blue shift in PL peak position is found to be primarily caused by the band bending effect based on self-consistent solutions of the Schrödinger and Poisson equations. Secondly, the design of the contact grid layout is studied to maximize the power output and energy conversion efficiency for concentrator solar cells. Because the conventional minimum power loss method used for the contact design is not accurate in determining the series resistance loss, a method of using a distributed series resistance model to maximize the power output is proposed for the contact design. It is found that the junction recombination loss in addition to the series resistance loss and shadowing loss can significantly affect the contact layout. The optimal finger spacing and maximum efficiency calculated by the two methods are close, and the differences are dependent on the series resistance and saturation currents of solar cells. Lastly, the accurate measurements of external quantum efficiency (EQE) are important for the design and development of MJ solar cells. However, the electrical and optical couplings between the subcells have caused EQE measurement artifacts. In order to interpret the measurement artifacts, DC and small signal models are built for the bias condition and the scan of chopped monochromatic light in the EQE measurements. Characterization methods are developed for the device parameters used in the models. The EQE measurement artifacts are found to be caused by the shunt and luminescence coupling effects, and can be minimized using proper voltage and light biases. Novel measurement methods using a pulse voltage bias or a pulse light bias are invented to eliminate the EQE measurement artifacts. These measurement methods are nondestructive and easy to implement. The pulse voltage bias or pulse light bias is superimposed on the conventional DC voltage and light biases, in order to control the operating points of the subcells and counterbalance the effects of shunt and luminescence coupling. The methods are demonstrated for the first time to effectively eliminate the measurement artifacts.
ContributorsLi, Jingjing (Author) / Zhang, Yong-Hang (Thesis advisor) / Tao, Meng (Committee member) / Schroder, Dieter (Committee member) / Vasileska, Dragica (Committee member) / Arizona State University (Publisher)
Created2012
153994-Thumbnail Image.png
Description
GaAs single-junction solar cells have been studied extensively in recent years, and have reached over 28 % efficiency. Further improvement requires an optically thick but physically thin absorber to provide both large short-circuit current and high open-circuit voltage. By detailed simulation, it is concluded that ultra-thin GaAs cells with hundreds

GaAs single-junction solar cells have been studied extensively in recent years, and have reached over 28 % efficiency. Further improvement requires an optically thick but physically thin absorber to provide both large short-circuit current and high open-circuit voltage. By detailed simulation, it is concluded that ultra-thin GaAs cells with hundreds of nanometers thickness and reflective back scattering can potentially offer efficiencies greater than 30 %. The 300 nm GaAs solar cell with AlInP/Au reflective back scattering is carefully designed and demonstrates an efficiency of 19.1 %. The device performance is analyzed using the semi-analytical model with Phong distribution implemented to account for non-Lambertian scattering. A Phong exponent m of ~12, a non-radiative lifetime of 130 ns, and a specific series resistivity of 1.2 Ω·cm2 are determined.

Thin-film CdTe solar cells have also attracted lots of attention due to the continuous improvements in their device performance. To address the issue of the lower efficiency record compared to detailed-balance limit, the single-crystalline Cd(Zn)Te/MgCdTe double heterostructures (DH) grown on InSb (100) substrates by molecular beam epitaxy (MBE) are carefully studied. The Cd0.9946Zn0.0054Te alloy lattice-matched to InSb has been demonstrated with a carrier lifetime of 0.34 µs observed in a 3 µm thick Cd0.9946Zn0.0054Te/MgCdTe DH sample. The substantial improvement of lifetime is due to the reduction in misfit dislocation density. The recombination lifetime and interface recombination velocity (IRV) of CdTe/MgxCd1-xTe DHs are investigated. The IRV is found to be dependent on both the MgCdTe barrier height and width due to the thermionic emission and tunneling processes. A record-long carrier lifetime of 2.7 µs and a record-low IRV of close to zero have been confirmed experimentally.

The MgCdTe/Si tandem solar cell is proposed to address the issue of high manufacturing costs and poor performance of thin-film solar cells. The MBE grown MgxCd1-xTe/MgyCd1-yTe DHs have demonstrated the required bandgap energy of 1.7 eV, a carrier lifetime of 11 ns, and an effective IRV of (1.869 ± 0.007) × 103 cm/s. The large IRV is attributed to thermionic-emission induced interface recombination. These understandings can be applied to fabricating the high-efficiency low-cost MgCdTe/Si tandem solar cell.
ContributorsLiu, Shi (Author) / Zhang, Yong-Hang (Thesis advisor) / Johnson, Shane R (Committee member) / Vasileska, Dragica (Committee member) / Yu, Hongbin (Committee member) / Arizona State University (Publisher)
Created2015
155006-Thumbnail Image.png
Description
Potential-Induced Degradation (PID) is an extremely serious photovoltaic (PV) durability issue significantly observed in crystalline silicon PV modules due to its rapid power degradation, particularly when compared to other PV degradation modes. The focus of this dissertation is to understand PID mechanisms and to develop PID-free cells and modules. PID-affected

Potential-Induced Degradation (PID) is an extremely serious photovoltaic (PV) durability issue significantly observed in crystalline silicon PV modules due to its rapid power degradation, particularly when compared to other PV degradation modes. The focus of this dissertation is to understand PID mechanisms and to develop PID-free cells and modules. PID-affected modules have been claimed to be fully recovered by high temperature and reverse potential treatments. However, the results obtained in this work indicate that the near-full recovery of efficiency can be achieved only at high irradiance conditions, but the full recovery of efficiency at low irradiance levels, of shunt resistance, and of quantum efficiency (QE) at short wavelengths could not be achieved. The QE loss observed at short wavelengths was modeled by changing the front surface recombination velocity. The QE scaling error due to a measurement on a PID shunted cell was addressed by developing a very low input impedance accessory applicable to an existing QE system. The impacts of silicon nitride (SiNx) anti-reflection coating (ARC) refractive index (RI) and emitter sheet resistance on PID are presented. Low RI ARC cells (1.87) were observed to be PID-susceptible whereas high RI ARC cells (2.05) were determined to be PID-resistant using a method employing high dose corona charging followed by time-resolved measurement of surface voltage. It has been demonstrated that the PID could be prevented by deploying an emitter having a low sheet resistance (~ 60 /sq) even if a PID-susceptible ARC is used in a cell. Secondary ion mass spectroscopy (SIMS) results suggest that a high phosphorous emitter layer hinders sodium transport, which is responsible for the PID. Cells can be screened for PID susceptibility by illuminated lock-in thermography (ILIT) during the cell fabrication process, and the sample structure for this can advantageously be simplified as long as the sample has the SiNx ARC and an aluminum back surface field. Finally, this dissertation presents a prospective method for eliminating or minimizing the PID issue either in the factory during manufacturing or in the field after system installation. The method uses commercially available, thin, and flexible Corning® Willow® Glass sheets or strips on the PV module glass superstrates, disrupting the current leakage path from the cells to the grounded frame.
ContributorsOh, Jaewon (Author) / Bowden, Stuart (Thesis advisor) / Tamizhmani, Govindasamy (Thesis advisor) / Honsberg, Christiana (Committee member) / Hacke, Peter (Committee member) / Schroder, Dieter (Committee member) / Arizona State University (Publisher)
Created2016
149377-Thumbnail Image.png
Description
As the world energy demand increases, semiconductor devices with high energy conversion efficiency become more and more desirable. The energy conversion consists of two distinct processes, namely energy generation and usage. In this dissertation, novel multi-junction solar cells and light emitting diodes (LEDs) are proposed and studied for

As the world energy demand increases, semiconductor devices with high energy conversion efficiency become more and more desirable. The energy conversion consists of two distinct processes, namely energy generation and usage. In this dissertation, novel multi-junction solar cells and light emitting diodes (LEDs) are proposed and studied for high energy conversion efficiency in both processes, respectively. The first half of this dissertation discusses the practically achievable energy conversion efficiency limit of solar cells. Since the demonstration of the Si solar cell in 1954, the performance of solar cells has been improved tremendously and recently reached 41.6% energy conversion efficiency. However, it seems rather challenging to further increase the solar cell efficiency. The state-of-the-art triple junction solar cells are analyzed to help understand the limiting factors. To address these issues, the monolithically integrated II-VI and III-V material system is proposed for solar cell applications. This material system covers the entire solar spectrum with a continuous selection of energy bandgaps and can be grown lattice matched on a GaSb substrate. Moreover, six four-junction solar cells are designed for AM0 and AM1.5D solar spectra based on this material system, and new design rules are proposed. The achievable conversion efficiencies for these designs are calculated using the commercial software package Silvaco with real material parameters. The second half of this dissertation studies the semiconductor luminescence refrigeration, which corresponds to over 100% energy usage efficiency. Although cooling has been realized in rare-earth doped glass by laser pumping, semiconductor based cooling is yet to be realized. In this work, a device structure that monolithically integrates a GaAs hemisphere with an InGaAs/GaAs quantum-well thin slab LED is proposed to realize cooling in semiconductor. The device electrical and optical performance is calculated. The proposed device then is fabricated using nine times photolithography and eight masks. The critical process steps, such as photoresist reflow and dry etch, are simulated to insure successful processing. Optical testing is done with the devices at various laser injection levels and the internal quantum efficiency, external quantum efficiency and extraction efficiency are measured.
ContributorsWu, Songnan (Author) / Zhang, Yong-Hang (Thesis advisor) / Menéndez, Jose (Committee member) / Ponce, Fernando (Committee member) / Belitsky, Andrei (Committee member) / Schroder, Dieter (Committee member) / Arizona State University (Publisher)
Created2010
157640-Thumbnail Image.png
Description
Silicon photonic technology continues to dominate the solar industry driven by steady improvement in device and module efficiencies. Currently, the world record conversion efficiency (~26.6%) for single junction silicon solar cell technologies is held by silicon heterojunction (SHJ) solar cells based on hydrogenated amorphous silicon (a-Si:H) and crystalline silicon (c-Si).

Silicon photonic technology continues to dominate the solar industry driven by steady improvement in device and module efficiencies. Currently, the world record conversion efficiency (~26.6%) for single junction silicon solar cell technologies is held by silicon heterojunction (SHJ) solar cells based on hydrogenated amorphous silicon (a-Si:H) and crystalline silicon (c-Si). These solar cells utilize the concept of carrier selective contacts to improve device efficiencies. A carrier selective contact is designed to optimize the collection of majority carriers while blocking the collection of minority carriers. In the case of SHJ cells, a thin intrinsic a-Si:H layer provides crucial passivation between doped a-Si:H and the c-Si absorber that is required to create a high efficiency cell. There has been much debate regarding the role of the intrinsic a-Si:H passivation layer on the transport of photogenerated carriers, and its role in optimizing device performance. In this work, a multiscale model is presented which utilizes different simulation methodologies to study interfacial transport across the intrinsic a-Si:H/c-Si heterointerface and through the a-Si:H passivation layer. In particular, an ensemble Monte Carlo simulator was developed to study high field behavior of photogenerated carriers at the intrinsic a-Si:H/c-Si heterointerface, a kinetic Monte Carlo program was used to study transport of photogenerated carriers across the intrinsic a-Si:H passivation layer, and a drift-diffusion model was developed to model the behavior in the quasi-neutral regions of the solar cell. This work reports de-coupled and self-consistent simulations to fully understand the role and effect of transport across the a-Si:H passivation layer in silicon heterojunction solar cells, and relates this to overall solar cell device performance.
ContributorsMuralidharan, Pradyumna (Author) / Goodnick, Stephen M (Thesis advisor) / Vasileska, Dragica (Thesis advisor) / Honsberg, Christiana (Committee member) / Ringhofer, Christian (Committee member) / Arizona State University (Publisher)
Created2019