Matching Items (13)
Filtering by

Clear all filters

151340-Thumbnail Image.png
Description
Potential induced degradation (PID) due to high system voltages is one of the major degradation mechanisms in photovoltaic (PV) modules, adversely affecting their performance due to the combined effects of the following factors: system voltage, superstrate/glass surface conductivity, encapsulant conductivity, silicon nitride anti-reflection coating property and interface property (glass/encapsulant; encapsulant/cell;

Potential induced degradation (PID) due to high system voltages is one of the major degradation mechanisms in photovoltaic (PV) modules, adversely affecting their performance due to the combined effects of the following factors: system voltage, superstrate/glass surface conductivity, encapsulant conductivity, silicon nitride anti-reflection coating property and interface property (glass/encapsulant; encapsulant/cell; encapsulant/backsheet). Previous studies carried out at ASU's Photovoltaic Reliability Laboratory (ASU-PRL) showed that only negative voltage bias (positive grounded systems) adversely affects the performance of commonly available crystalline silicon modules. In previous studies, the surface conductivity of the glass surface was obtained using either conductive carbon layer extending from the glass surface to the frame or humidity inside an environmental chamber. This thesis investigates the influence of glass surface conductivity disruption on PV modules. In this study, conductive carbon was applied only on the module's glass surface without extending to the frame and the surface conductivity was disrupted (no carbon layer) at 2cm distance from the periphery of frame inner edges. This study was carried out under dry heat at two different temperatures (60 °C and 85 °C) and three different negative bias voltages (-300V, -400V, and -600V). To replicate closeness to the field conditions, half of the selected modules were pre-stressed under damp heat for 1000 hours (DH 1000) and the remaining half under 200 hours of thermal cycling (TC 200). When the surface continuity was disrupted by maintaining a 2 cm gap from the frame to the edge of the conductive layer, as demonstrated in this study, the degradation was found to be absent or negligibly small even after 35 hours of negative bias at elevated temperatures. This preliminary study appears to indicate that the modules could become immune to PID losses if the continuity of the glass surface conductivity is disrupted at the inside boundary of the frame. The surface conductivity of the glass, due to water layer formation in a humid condition, close to the frame could be disrupted just by applying a water repelling (hydrophobic) but high transmittance surface coating (such as Teflon) or modifying the frame/glass edges with water repellent properties.
ContributorsTatapudi, Sai Ravi Vasista (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Srinivasan, Devarajan (Committee member) / Rogers, Bradley (Committee member) / Arizona State University (Publisher)
Created2012
150928-Thumbnail Image.png
Description
Photovoltaic (PV) modules are typically rated at three test conditions: STC (standard test conditions), NOCT (nominal operating cell temperature) and Low E (low irradiance). The current thesis deals with the power rating of PV modules at twenty-three test conditions as per the recent International Electrotechnical Commission (IEC) standard of IEC

Photovoltaic (PV) modules are typically rated at three test conditions: STC (standard test conditions), NOCT (nominal operating cell temperature) and Low E (low irradiance). The current thesis deals with the power rating of PV modules at twenty-three test conditions as per the recent International Electrotechnical Commission (IEC) standard of IEC 61853 – 1. In the current research, an automation software tool developed by a previous researcher of ASU – PRL (ASU Photovoltaic Reliability Laboratory) is validated at various stages. Also in the current research, the power rating of PV modules for four different manufacturers is carried out according to IEC 61853 – 1 standard using a new outdoor test method. The new outdoor method described in this thesis is very different from the one reported by a previous researcher of ASU – PRL. The new method was designed to reduce the labor hours in collecting the current-voltage ( I – V) curves at various temperatures and irradiance levels. The power matrices for all the four manufacturers were generated using the I – V data generated at different temperatures and irradiance levels and the translation procedures described in IEC 60891 standard. All the measurements were carried out on both clear and cloudy days using an automated 2 – axis tracker located at ASU – PRL, Mesa, Arizona. The modules were left on the 2 – axis tracker for 12 continuous days and the data was continuously and automatically collected for every two minutes from 6 am to 6 pm. In order to obtain the I – V data at wide range of temperatures and irradiance levels, four identical (or nearly identical) modules were simultaneously installed on the 2 – axis tracker with and without thermal insulators on the back of the modules and with and without mesh screens on the front of the modules. Several issues related to the automation software were uncovered and the required improvement in the software has been suggested. The power matrices for four manufacturers have been successfully generated using the new outdoor test method developed in this work. The data generated in this work has been extensively analyzed for accuracy and for performance efficiency comparison at various temperatures and irradiance levels.
ContributorsVemula, Meena Gupta (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Macia, Narcio F. (Committee member) / Rogers, Bradley (Committee member) / Arizona State University (Publisher)
Created2012
133555-Thumbnail Image.png
Description
Bifacial photovoltaic modules are a relatively new development in the photovoltaic industry which allows for the collection and conversion of light on both sides of photovoltaic modules to usable electricity. Additional energy yield from bifacial photovoltaic modules, despite a slight increase in cost due to manufacturing processes of the bifacial

Bifacial photovoltaic modules are a relatively new development in the photovoltaic industry which allows for the collection and conversion of light on both sides of photovoltaic modules to usable electricity. Additional energy yield from bifacial photovoltaic modules, despite a slight increase in cost due to manufacturing processes of the bifacial cells, has the potential to significantly decrease the LCOE of photovoltaic installation. The performance of bifacial modules is dependent on three major factors: incident irradiation on the front side of the module, reflected irradiation on the back side of the module, and the module's bifaciality. Bifaciality is an inherent property of the photovoltaic cells and is determined by the performance of the front and rear side of the module when tested at STC. The reflected light on the back side of the module, however, is determined by several different factors including the incident ground irradiance, shading from the modules and racking system, height of the module installation, and ground albedo. Typical ground surfaces have a low albedo, which means that the magnitude of reflected light is a low percentage of the incident irradiance. Non-uniformity of back-side irradiance can also reduce the power generation due to cell-to-cell mismatch losses. This study investigates the use of controlled back-side reflectors to improve the irradiance on the back side of loosely packed 48-cell bifacial modules and compares this performance to the performance of 48 and 60-cell bifacial modules which rely on the uncontrolled reflection off nearby ground surfaces. Different construction geometries and reflective coating materials were tested to determine optimal construction to improve the reflectivity and uniformity of reflection. Results of this study show a significant improvement of 10-14% total energy production from modules with reflectors when compared to the 48-cell module with an uncontrolled ground reflection.
ContributorsBowersox, David Andrew (Author) / Tamizhmani, Govindasamy (Thesis director) / Srinivasan, Devarajan (Committee member) / School for Engineering of Matter, Transport and Energy (Contributor) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
189218-Thumbnail Image.png
Description
Solar photovoltaic (PV) generation has seen significant growth in 2021, with an increase of around 22% and exceeding 1000 TWh. However, this has also led to reliability and durability issues, particularly potential induced degradation (PID), which can reduce module output by up to 30%. This study uses cell- and module-level

Solar photovoltaic (PV) generation has seen significant growth in 2021, with an increase of around 22% and exceeding 1000 TWh. However, this has also led to reliability and durability issues, particularly potential induced degradation (PID), which can reduce module output by up to 30%. This study uses cell- and module-level analysis to investigate the impact of superstrate, encapsulant, and substrate on PID.The influence of different substrates and encapsulants is studied using one-cell modules, showing that substrates with poor water-blocking properties can worsen PID, and encapsulants with lower volumetric resistance can conduct easily under damp conditions, enabling PID mechanisms (results show maximum degradation of 9%). Applying an anti-soiling coating on the front glass (superstrate) reduces PID by nearly 53%. Typical superstrates have sodium which accelerates the PID process, and therefore, using such coatings can lessen the PID problem. At the module level, the study examines the influence of weakened interface adhesion strengths in traditional Glass-Backsheet (GB) and emerging Glass-Glass (GG) (primarily bifacial modules) constructions. The findings show nearly 64% more power degradation in GG modules than in GB. Moreover, the current methods for detecting PID use new modules, which can give inaccurate information instead of DH-stressed modules for PID testing, as done in this work. A comprehensive PID susceptibility analysis for multiple fresh bifacial constructions shows significant degradation from 20 to 50% in various constructions. The presence of glass as the substrate exacerbates the PID problem due to more ionic activity available from the two glass sides. Recovery experiments are also conducted to understand the extent of the PID issue. Overall, this study identifies, studies, and explains the impact of superstrate, substrate, and encapsulant on the underlying PID mechanisms. Various pre- and post-stress characterization tests, including light and dark current-voltage (I-V) tests, electroluminescence (EL) imaging, infrared (IR) imaging, and UV fluorescence (UVF) imaging, are used to evaluate the findings. This study is significant as it provides insights into the PID issues in solar PV systems, which can help improve their performance and reliability.
ContributorsMahmood, Farrukh ibne (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Rogers, Bradley (Committee member) / Oh, Jaewon (Committee member) / Rajadas, John (Committee member) / Arizona State University (Publisher)
Created2023
187539-Thumbnail Image.png
Description
This study introduces a new outdoor accelerated testing method called “Field Accelerated Stress Testing (FAST)” for photovoltaic (PV) modules performed at two different climatic sites in Arizona (hot-dry) and Florida (hot-humid). FAST is a combined accelerated test methodology that simultaneously accounts for all the field-specific stresses and accelerates only key

This study introduces a new outdoor accelerated testing method called “Field Accelerated Stress Testing (FAST)” for photovoltaic (PV) modules performed at two different climatic sites in Arizona (hot-dry) and Florida (hot-humid). FAST is a combined accelerated test methodology that simultaneously accounts for all the field-specific stresses and accelerates only key stresses, such as temperature, to forecast the failure modes by 2- 7 times in advance depending on the activation energy of the degradation mechanism (i.e., 10th year reliability issues can potentially be predicted in the 2nd year itself for an acceleration factor of 5). In this outdoor combined accelerated stress study, the temperatures of test modules were increased (by 16-19℃ compared to control modules) using thermal insulations on the back of the modules. All other conditions (ambient temperature, humidity, natural sunlight, wind speed, wind direction, and tilt angle) were left constant for both test modules (with back thermal insulation) and control modules (without thermal insulation). In this study, a total of sixteen 4-cell modules with two different construction types (glass/glass [GG] and glass/backsheet [GB]) and two different encapsulant types (ethylene vinyl acetate [EVA] and polyolefin elastomer [POE]), were investigated at both sites with eight modules at each site (four insulated and four non-insulated modules at each site). All the modules were extensively characterized before installation in the field and after field exposure over two years. The methods used for characterizing the devices included I-V (current-voltage curves), EL (electroluminescence), UVF (ultraviolet fluorescence), and reflectance. The key findings of this study are: i) the GG modules tend to operate at a higher temperature (1-3℃) than the GB modules at both sites of Arizona and Florida (a lower lifetime is expected for GG modules compared to GB modules); ii) the GG modules tend to experience a higher level of encapsulant discoloration and grid finger degradation than the GB modules at both sites (a higher level of the degradation rate is expected in GG modules compared to GB modules); and, iii) the EVA-based modules tend to have a higher level of discoloration and finger degradation compared to the POE-based modules at both sites.
ContributorsThayumanavan, Rishi Gokul (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Phelan, Patrick (Thesis advisor) / Calhoun, Ronald (Committee member) / Arizona State University (Publisher)
Created2023
157020-Thumbnail Image.png
Description
Global photovoltaic (PV) module installation in 2018 is estimated to exceed 100 GW, and crystalline Si (c-Si) solar cell-based modules have a share more than 90% of the global PV market. To reduce the social cost of PV electricity, further developments in reliability of solar panels are expected. These will

Global photovoltaic (PV) module installation in 2018 is estimated to exceed 100 GW, and crystalline Si (c-Si) solar cell-based modules have a share more than 90% of the global PV market. To reduce the social cost of PV electricity, further developments in reliability of solar panels are expected. These will lead to realize longer module lifetime and reduced levelized cost of energy. As many as 86 failure modes are observed in PV modules [1] and series resistance increase is one of the major durability issues of all. Series resistance constitutes emitter sheet resistance, metal-semiconductor contact resistance, and resistance across the metal-solder ribbon. Solder bond degradation at the cell interconnect is one of the primary causes for increase in series resistance, which is also considered to be an invisible defect [1]. Combination of intermetallic compounds (IMC) formation during soldering and their growth due to solid state diffusion over its lifetime result in formation of weak interfaces between the solar cell and the interconnect. Thermal cycling under regular operating conditions induce thermo-mechanical fatigue over these weak interfaces resulting in contact reduction or loss. Contact reduction or loss leads to increase in series resistance which further manifests into power and fill factor loss. The degree of intermixing of metallic interfaces and contact loss depends on climatic conditions as temperature and humidity (moisture ingression into the PV module laminate) play a vital role in reaction kinetics of these layers. Modules from Arizona and Florida served as a good sample set to analyze the effects of hot and humid climatic conditions respectively. The results obtained in the current thesis quantifies the thickness of IMC formation from SEM-EDS profiles, where similar modules obtained from different climatic conditions were compared. The results indicate the thickness of the IMC and detachment degree to be growing with age and operating temperatures of the module. This can be seen in CuxSny IMC which is thicker in the case of Arizona module. The results obtained from FL

ii

aged modules also show that humidity accelerates the formation of IMC as they showed thicker AgxSny layer and weak interconnect-contact interfaces as compared to Arizona modules. It is also shown that climatic conditions have different effects on rate at which CuxSny and AgxSny intermetallic compounds are formed.
ContributorsBuddha, Viswa Sai Pavan (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Alford, Terry (Thesis advisor) / Srinivasan, Devarajan (Committee member) / Arizona State University (Publisher)
Created2018
157001-Thumbnail Image.png
Description
Ethylene vinyl acetate (EVA) is the most commonly used encapsulant in photovoltaic modules. However, EVA degrades over time and causes performance losses in PV system. Therefore, EVA degradation is a matter of concern from a durability point of view.

This work compares EVA encapsulant degradation in glass/backsheet and glass/glass field-aged

Ethylene vinyl acetate (EVA) is the most commonly used encapsulant in photovoltaic modules. However, EVA degrades over time and causes performance losses in PV system. Therefore, EVA degradation is a matter of concern from a durability point of view.

This work compares EVA encapsulant degradation in glass/backsheet and glass/glass field-aged PV modules. EVA was extracted from three field-aged modules (two glass/backsheet and one glass/glass modules) from three different manufacturers from various regions (cell edges, cell centers, and non-cell region) from each module based on their visual and UV Fluorescence images. Characterization techniques such as I-V measurements, Colorimetry, Different Scanning Calorimetry, Thermogravimetric Analysis, Raman spectroscopy, and Fourier Transform Infrared Spectroscopy were performed on EVA samples.

The intensity of EVA discoloration was quantified using colorimetric measurements. Module performance parameters like Isc and Pmax degradation rates were calculated from I-V measurements. Properties such as degree of crystallinity, vinyl acetate content and degree of crosslinking were calculated from DSC, TGA, and Raman measurements, respectively. Polyenes responsible for EVA browning were identified in FTIR spectra.

The results from the characterization techniques confirmed that when EVA undergoes degradation, crosslinking in EVA increases beyond 90% causing a decrease in the degree of crystallinity and an increase in vinyl acetate content of EVA. Presence of polyenes in FTIR spectra of degraded EVA confirmed the occurrence of Norrish II reaction. However, photobleaching occurred in glass/backsheet modules due to the breathable backsheet whereas no photobleaching occurred in glass/glass modules because they were hermetically sealed. Hence, the yellowness index along with the Isc and Pmax degradation rates of EVA in glass/glass module is higher than that in glass/backsheet modules.

The results implied that more acetic acid was produced in the non-cell region due to its double layer of EVA compared to the front EVA from cell region. But, since glass/glass module is hermetically sealed, acetic acid gets entrapped inside the module further accelerating EVA degradation whereas it diffuses out through backsheet in glass/backsheet modules. Hence, it can be said that EVA might be a good encapsulant for glass/backsheet modules, but the same cannot be said for glass/glass modules.
ContributorsPatel, Aesha Parimalbhai (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Green, Matthew (Committee member) / Mu, Bin (Committee member) / Arizona State University (Publisher)
Created2018
155006-Thumbnail Image.png
Description
Potential-Induced Degradation (PID) is an extremely serious photovoltaic (PV) durability issue significantly observed in crystalline silicon PV modules due to its rapid power degradation, particularly when compared to other PV degradation modes. The focus of this dissertation is to understand PID mechanisms and to develop PID-free cells and modules. PID-affected

Potential-Induced Degradation (PID) is an extremely serious photovoltaic (PV) durability issue significantly observed in crystalline silicon PV modules due to its rapid power degradation, particularly when compared to other PV degradation modes. The focus of this dissertation is to understand PID mechanisms and to develop PID-free cells and modules. PID-affected modules have been claimed to be fully recovered by high temperature and reverse potential treatments. However, the results obtained in this work indicate that the near-full recovery of efficiency can be achieved only at high irradiance conditions, but the full recovery of efficiency at low irradiance levels, of shunt resistance, and of quantum efficiency (QE) at short wavelengths could not be achieved. The QE loss observed at short wavelengths was modeled by changing the front surface recombination velocity. The QE scaling error due to a measurement on a PID shunted cell was addressed by developing a very low input impedance accessory applicable to an existing QE system. The impacts of silicon nitride (SiNx) anti-reflection coating (ARC) refractive index (RI) and emitter sheet resistance on PID are presented. Low RI ARC cells (1.87) were observed to be PID-susceptible whereas high RI ARC cells (2.05) were determined to be PID-resistant using a method employing high dose corona charging followed by time-resolved measurement of surface voltage. It has been demonstrated that the PID could be prevented by deploying an emitter having a low sheet resistance (~ 60 /sq) even if a PID-susceptible ARC is used in a cell. Secondary ion mass spectroscopy (SIMS) results suggest that a high phosphorous emitter layer hinders sodium transport, which is responsible for the PID. Cells can be screened for PID susceptibility by illuminated lock-in thermography (ILIT) during the cell fabrication process, and the sample structure for this can advantageously be simplified as long as the sample has the SiNx ARC and an aluminum back surface field. Finally, this dissertation presents a prospective method for eliminating or minimizing the PID issue either in the factory during manufacturing or in the field after system installation. The method uses commercially available, thin, and flexible Corning® Willow® Glass sheets or strips on the PV module glass superstrates, disrupting the current leakage path from the cells to the grounded frame.
ContributorsOh, Jaewon (Author) / Bowden, Stuart (Thesis advisor) / Tamizhmani, Govindasamy (Thesis advisor) / Honsberg, Christiana (Committee member) / Hacke, Peter (Committee member) / Schroder, Dieter (Committee member) / Arizona State University (Publisher)
Created2016
155828-Thumbnail Image.png
Description
Solar photovoltaic (PV) deployment has grown at unprecedented rates since the early 2000s. As the global PV market increases, so will the volume of decommissioned PV panels. Growing PV panel waste presents a new environmental challenge, but also unprecedented opportunities to create value and pursue new economic avenues. Currently, in

Solar photovoltaic (PV) deployment has grown at unprecedented rates since the early 2000s. As the global PV market increases, so will the volume of decommissioned PV panels. Growing PV panel waste presents a new environmental challenge, but also unprecedented opportunities to create value and pursue new economic avenues. Currently, in the United States, there are no regulations for governing the recycling of solar panels and the recycling process varies by the manufacturer. To bring in PV specific recycling regulations, whether the PV panels are toxic to the landfills, is to be determined. Per existing EPA regulations, PV panels are categorized as general waste and are subjected to a toxicity characterization leaching procedure (TCLP) to determine if it contains any toxic metals that can possibly leach into the landfill. In this thesis, a standardized procedure is developed for extracting samples from an end of life PV module. A literature review of the existing regulations in Europe and other countries is done. The sample extraction procedure is tested on a crystalline Si module to validate the method. The extracted samples are sent to an independent TCLP testing lab and the results are obtained. Image processing technique developed at ASU PRL is used to detect the particle size in a broken module and the size of samples sent is confirmed to follow the regulation.
ContributorsKrishnamurthy, Raghav (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Srinivasan, Devarajan (Committee member) / Kuitche, Joseph (Committee member) / Arizona State University (Publisher)
Created2017
155871-Thumbnail Image.png
Description
Performance of photovoltaic (PV) modules decrease as the operating temperatures increase. In hot climatic conditions, the operating temperature can reach as high as 85°C for the rooftop modules. Considering a typical power drop of 0.5%/°C for crystalline silicon modules, a performance decrease of approximately 30% could be expected during peak

Performance of photovoltaic (PV) modules decrease as the operating temperatures increase. In hot climatic conditions, the operating temperature can reach as high as 85°C for the rooftop modules. Considering a typical power drop of 0.5%/°C for crystalline silicon modules, a performance decrease of approximately 30% could be expected during peak summer seasons due to the difference between module rated temperature of 25°C and operating temperature of 85°C. Therefore, it is critical to accurately predict the temperature of the modules so the performance can be accurately predicted. The module operating temperature is based not only on the ambient and irradiance conditions but is also based on the thermal properties of module packaging materials. One of the key packaging materials that would influence the module operating temperature is the substrate, polymer backsheet or glass. In this study, the thermal influence of three different polymer backsheet substrates and one glass substrate has been investigated through five tasks:

1. Determination and modeling of substrate or module temperature of coupons using four different substrates (three backsheet materials and one glass material).

2. Determination and modeling of cell temperature of coupons using four different substrates (three backsheet materials and one glass material)

3. Determination of temperature difference between cell and individual substrates for coupons of all four substrates

4. Determination of NOCT (nominal operating cell temperature) of coupons using all four substrate materials

5. Comparison of operating temperature difference between backsheet substrate coupons.

All these five tasks have been executed using the specially constructed one-cell coupons with identical cells but with four different substrates. For redundancy, two coupons per substrate were constructed and investigated. This study has attempted to model the effect of thermal conductivity of backsheet material on the cell and backsheet temperatures.
ContributorsNatarajan Rammohan, Balamurali (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Srinivasan, Devarajan (Committee member) / Kuitche, Joseph (Committee member) / Arizona State University (Publisher)
Created2017