Matching Items (4)
Filtering by

Clear all filters

151252-Thumbnail Image.png
Description
Semiconductor device scaling has kept up with Moore's law for the past decades and they have been scaling by a factor of half every one and half years. Every new generation of device technology opens up new opportunities and challenges and especially so for analog design. High speed and low

Semiconductor device scaling has kept up with Moore's law for the past decades and they have been scaling by a factor of half every one and half years. Every new generation of device technology opens up new opportunities and challenges and especially so for analog design. High speed and low gain is characteristic of these processes and hence a tradeoff that can enable to get back gain by trading speed is crucial. This thesis proposes a solution that increases the speed of sampling of a circuit by a factor of three while reducing the specifications on analog blocks and keeping the power nearly constant. The techniques are based on the switched capacitor technique called Correlated Level Shifting. A triple channel Cyclic ADC has been implemented, with each channel working at a sampling frequency of 3.33MS/s and a resolution of 14 bits. The specifications are compared with that based on a traditional architecture to show the superiority of the proposed technique.
ContributorsSivakumar, Balasubramanian (Author) / Farahani, Bahar Jalali (Thesis advisor) / Garrity, Douglas (Committee member) / Bakkaloglu, Bertan (Committee member) / Aberle, James T., 1961- (Committee member) / Arizona State University (Publisher)
Created2012
136655-Thumbnail Image.png
Description

The U.S. Navy and other amphibious military organizations utilize a derivation of the traditional side stroke called the Combat Side Stroke, or CSS, and tout it as the most efficient technique available. Citing its low aerobic requirements and slow yet powerful movements as superior to the traditionally-best front crawl (freestyle),

The U.S. Navy and other amphibious military organizations utilize a derivation of the traditional side stroke called the Combat Side Stroke, or CSS, and tout it as the most efficient technique available. Citing its low aerobic requirements and slow yet powerful movements as superior to the traditionally-best front crawl (freestyle), the CSS is the go-to stroke for any operation in the water. The purpose of this thesis is to apply principles of Industrial Engineering to a real-world situation not typically approached from a perspective of optimization. I will analyze pre-existing data about various swim strokes in order to compare them in terms of efficiency for different variables. These variables include calories burned, speed, and strokes per unit distance, as well as their interactions. Calories will be measured by heart rate monitors, converting BPM to calories burned. Speed will be measured by stopwatch and observer. Strokes per unit distance will be measured by observer. The strokes to be analyzed include the breast stroke, crawl stroke, butterfly, and combat side stroke. The goal is to informally test the U.S. Navy's claim that the combat side stroke is the optimum stroke to conserve energy while covering distance. Because of limitations in the scope of the project, analysis will be done using data collected from literary sources rather than through experimentation. This thesis will include a design of experiment to test the findings here in practical study. The main method of analysis will be linear programming, followed by hypothesis testing, culminating in a design of experiment for future progress on this topic.

ContributorsGoodsell, Kevin Lewis (Author) / McCarville, Daniel R. (Thesis director) / Kashiwagi, Jacob (Committee member) / Industrial, Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2014-12
134341-Thumbnail Image.png
Description
As single junction silicon based solar cells approach their Shockley\u2014Queasier (SQ) conversion efficiency limits, tandem solar cells (TSC) provide an attractive prospect for higher efficiency cells. Although TSCs have been shown to be more efficient, their higher fabrication costs are a limiting factor for their economic competitiveness and large-scale integration

As single junction silicon based solar cells approach their Shockley\u2014Queasier (SQ) conversion efficiency limits, tandem solar cells (TSC) provide an attractive prospect for higher efficiency cells. Although TSCs have been shown to be more efficient, their higher fabrication costs are a limiting factor for their economic competitiveness and large-scale integration in PV power systems. Current literature suggests that even with reduced costs of fabrication in the future, TSCs still offer no competitive benefit for integration in utility-scale systems and may yield minimal benefits only in places where area-related costs are high. This work investigates Balance of Systems (BoS) circumstances under which TSCs can attain economic viability in scenarios where the necessary technological advances are made to increase the efficiency of solar cells beyond the SQ limit.
ContributorsMugwisi, Ngoni (Author) / Holman, Zachary (Thesis director) / Phelan, Patrick (Committee member) / Industrial, Systems (Contributor) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
135972-Thumbnail Image.png
Description
The Performance Based Studies Research Studies Group (PBSRG) at Arizona State University (ASU) has been studying the cause of increased cost and time in construction and other projects for the last 20 years. Through two longitudinal studies with a group of owners in the state of Minnesota (400 tests over

The Performance Based Studies Research Studies Group (PBSRG) at Arizona State University (ASU) has been studying the cause of increased cost and time in construction and other projects for the last 20 years. Through two longitudinal studies with a group of owners in the state of Minnesota (400 tests over six years) and the US Army Medical Command (400 tests over four years), the client/buyer has been identified as the largest risk and source of project cost and time deviations. This has been confirmed by over 1,500 tests conducted over the past 20 years. The focus of this research effort is to analyze the economic and performance impact of a delivery process of construction called the Job Order Contracting (JOC) process, to evaluate the value (in terms of time, cost, and customer satisfaction) achieved when utilizing JOC over other traditional methods to complete projects. JOC's strength is that it minimizes the need for the owner to manage, direct and control (MDC) through a lengthy traditional process of design, bid, and award of a construction contract. The study identifies the potential economic savings of utilizing JOC. This paper looks at the results of an ongoing study surveying eight different public universities. The results of the research show that in comparison to more traditional models, JOC has large cost savings, and is preferable among most owners who have used multiple delivery systems.
ContributorsLi, Hao (Author) / Kashiwagi, Dean (Thesis director) / Kashiwagi, Jacob (Committee member) / Industrial, Systems (Contributor) / Department of Information Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12