Matching Items (2)
Filtering by

Clear all filters

134961-Thumbnail Image.png
Description
There are two electrophysiological states of sleep in birds (rapid-eye-movement sleep [REM] and slow-wave sleep [SWS]), which have different functions and costs. REM improves memory consolidation, while SWS is neuro-restorative but also exposes the animal to more risk during this deep-sleep phase. Birds who sleep in more exposed microsites are known

There are two electrophysiological states of sleep in birds (rapid-eye-movement sleep [REM] and slow-wave sleep [SWS]), which have different functions and costs. REM improves memory consolidation, while SWS is neuro-restorative but also exposes the animal to more risk during this deep-sleep phase. Birds who sleep in more exposed microsites are known to invest proportionally less in SWS (presumably to ensure proper vigilance), but otherwise little else is known about the ecological or behavioral predictors of how much time birds devote to REM v. SWS sleep. In this comparative analysis, we examine how proportional time spent in SWS v. REM is related to brain mass and duration of the incubation period in adults. Brain mass and incubation period were chosen as predictors of sleep state investment because brain mass is positively correlated with body size (and may show a relationship between physical development and sleep) and incubation period can be a link used to show similarities and differences between birds and mammals (using mammalian gestation period). We hypothesized that (1) species with larger brains (relative to body size and also while controlling for phylogeny) would have higher demands for information processing, and possibly proportionally outweigh neuro-repair, and thus devote more time to REM and that (2) species with longer incubation periods would have proportionally more REM due to the extended time required for overnight predator vigilance (and not falling into deep sleep) while on the nest. We found, using neurophysiological data from literature on 27 bird species, that adults from species with longer incubation periods spent proportionally more time in REM sleep, but that relative brain size was not significantly associated with relative time spent in REM or SWS. We therefore provide evidence that mammalian and avian REM in response to incubation/gestation period have convergently evolved. Our results suggest that overnight environmental conditions (e.g. sleep site exposure) might have a greater effect on sleep parameters than gross morphological attributes.
ContributorsRaiffe, Joshua Sapell (Author) / McGraw, Kevin (Thesis director) / Deviche, Pierre (Committee member) / Hutton, Pierce (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134101-Thumbnail Image.png
Description
Humans have greatly altered the night-time photic environment via the production of artificial light at night (ALAN; e.g. street lights, car traffic, billboards, lit buildings). ALAN is problematic because it may significantly alter the seasonal/daily physiological rhythms or behaviors of animals. There has been considerable interest in the impacts of

Humans have greatly altered the night-time photic environment via the production of artificial light at night (ALAN; e.g. street lights, car traffic, billboards, lit buildings). ALAN is problematic because it may significantly alter the seasonal/daily physiological rhythms or behaviors of animals. There has been considerable interest in the impacts of ALAN on health in humans and lab animals, but most such work has centered on adults and we know comparatively little about effects on young animals. We exposed 3-week-old king quail (Excalfactoria chinensis) to a constant overnight blue-light regime for 6 weeks and assessed weekly bactericidal activity of plasma against Escherichia coli - a commonly employed metric of innate immunity in animals. We found that chronic ALAN exposure significantly increased immune function, and that this elevation in immune performance manifested at different developmental time points in males and females. These results counter the pervasive notion that overnight light exposure is universally physiologically harmful to diurnal organisms and indicate that ALAN can provide sex-specific, short-term immunological boosts to developing animals.
ContributorsSaini, Chandan (Author) / McGraw, Kevin (Thesis director) / Hutton, Pierce (Committee member) / Sweazea, Karen (Committee member) / Department of Psychology (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12