Matching Items (2)
Filtering by

Clear all filters

131608-Thumbnail Image.png
Description
This research evaluates the capabilities of typical radiological measures and dual-energy systems to differentiate common kidney stones materials: uric acid, oxalates, phosphates, struvite, and cystine. Two different X-ray spectra (80 kV and 120 kV) were applied and the dual-energy ratio of individual kidney stones was used to figure out the

This research evaluates the capabilities of typical radiological measures and dual-energy systems to differentiate common kidney stones materials: uric acid, oxalates, phosphates, struvite, and cystine. Two different X-ray spectra (80 kV and 120 kV) were applied and the dual-energy ratio of individual kidney stones was used to figure out the discriminability of different materials. A CT cross-section with a prospective kidney stone was analyzed to see the capabilities of such a technique. Typical radiological measures suggested that phosphates and oxalate stones can be distinguished from uric acid stones while dual-energy seemed to prove similar effectiveness.
ContributorsDelafuente, Nicholas William (Author) / Rez, Peter (Thesis director) / Alarcon, Ricardo (Committee member) / Department of Physics (Contributor) / Economics Program in CLAS (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
165116-Thumbnail Image.png
Description

In a hypothetical Grand Unified Theory, magnetic monopoles are a particle which would act as a charge carrier for the magnetic force. Evidence of magnetic monopoles has yet to be found and based off of their relatively high mass (4-10 TeV) will be difficult to find with current technology. The

In a hypothetical Grand Unified Theory, magnetic monopoles are a particle which would act as a charge carrier for the magnetic force. Evidence of magnetic monopoles has yet to be found and based off of their relatively high mass (4-10 TeV) will be difficult to find with current technology. The goal of my thesis is to mathematically model the magnetic monopole by finding numerical solutions to the equations of motion. In my analysis, I consider four cases: kinks, cosmic strings, global monopoles, and magnetic monopoles. I will also study electromagnetic gauge fields to prepare to include gauge fields in the magnetic monopole case. Numerical solutions are found for the cosmic string and global monopole cases. As expected, the energy is high at small distance r and drops off as r goes to infinity. Currently numerical solutions are being worked towards for electromagnetic gauge fields and the magnetic monopole case.

ContributorsBrown, Taryn (Author) / Vachaspati, Tanmay (Thesis director) / Keeler, Cynthia (Committee member) / Barrett, The Honors College (Contributor) / School of Human Evolution & Social Change (Contributor) / Department of Physics (Contributor) / School of Earth and Space Exploration (Contributor)
Created2022-05