Matching Items (7)
Filtering by

Clear all filters

136114-Thumbnail Image.png
Description
Preliminary feasibility studies for two possible experiments with the GlueX detector, installed in Hall D of Jefferson Laboratory, are presented. First, a general study of the feasibility of detecting the ηC at the current hadronic rate is discussed, without regard for detector or reconstruction efficiency. Second, a study of the

Preliminary feasibility studies for two possible experiments with the GlueX detector, installed in Hall D of Jefferson Laboratory, are presented. First, a general study of the feasibility of detecting the ηC at the current hadronic rate is discussed, without regard for detector or reconstruction efficiency. Second, a study of the use of statistical methods in studying exotic meson candidates is outlined, describing methods and providing preliminary data on their efficacy.
ContributorsPrather, Benjamin Scott (Author) / Ritchie, Barry G. (Thesis director) / Dugger, Michael (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Department of Physics (Contributor)
Created2015-05
133498-Thumbnail Image.png
Description
A search is underway to find baryon resonances that have been predicted, but yet remain unobserved. Nucleon resonances, due to their broad energy widths, overlap and must be disentangled in order to be identified. Meson photoproduction observables related to the orientation of the spin of the incoming photon and the

A search is underway to find baryon resonances that have been predicted, but yet remain unobserved. Nucleon resonances, due to their broad energy widths, overlap and must be disentangled in order to be identified. Meson photoproduction observables related to the orientation of the spin of the incoming photon and the spin of the target proton are useful tools to deconvolve the nucleon resonance spectrum. These observables are particularly sensitive to interference between phases of the complex amplitudes. A set of these observables has been measured using the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab with linearly-polarized photons having energies from 725 to 1575 MeV with polar angle values of cos(theta) between -0.8 and 0.9 and transversely-polarized protons in the Jefferson Lab FRozen Spin Target (FROST). By fitting neutron yields from gamma p -> pi^+ n over azimuthal scattering angle, the observables \H and P have been extracted. These observables manifest as azimuthal modulations in the yields for the double-polarization experiment. Preliminary results for these observables will be presented and compared with predictions provided by the SAID Partial-Wave Analysis Facility.
ContributorsLee, Robert John (Author) / Dugger, Michael (Thesis director) / Ritchie, Barry (Committee member) / Department of Physics (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
171920-Thumbnail Image.png
Description
Proton radiotherapy has recently become a popular form of cancer treatment. For maximum effectiveness, accurate models are needed to calculate proton angular scattering and energy loss. Scattering events are statistically independent and may be calculated from the effective number of events per reciprocal multiple scattering angle or energy loss. It

Proton radiotherapy has recently become a popular form of cancer treatment. For maximum effectiveness, accurate models are needed to calculate proton angular scattering and energy loss. Scattering events are statistically independent and may be calculated from the effective number of events per reciprocal multiple scattering angle or energy loss. It is shown that multiple scattering distributions from Molière’s scattering law can be convolved by depth for accurate numerical calculation of angular distributions in several example materials. This obviates the need for correction factors to the analytic solution and its approximations. It is also shown that numerically solving Molière’s scattering law in terms of the complete (non-small angle) differential cross section and large angle approximations extends the validity of Molière theory to large angles. To calculate probability energy loss distributions, Landau-Vavilov theory is adapted to Fourier transforms and extended to very thick targets through convolution over the probability energy loss distributions in each depth interval. When the depth is expressed in terms of the continuous slowing down approximation (CSDA) the resulting probability energy loss distributions rely on the mean excitation energy as the sole material dependent parameter. Through numerical calculation of the CSDA over the desired energy loss, this allows the energy loss cross section to vary across the distribution and accurately accounts for broadening and skewness for thick targets in a compact manner. An analytic, Fourier transform solution to Vavilov’s integral is shown. A single scattering nuclear model that calculates large angle dose distributions that have a similar functional form to FLUKA (FLUktuierende KAskade) Monte Carlo, is also introduced. For incorporation into Monte Carlo or a treatment planning system, lookup tables of the number of scattering events or cross sections for different clinical energies may be used to determine angular or energy loss distributions.
ContributorsBrosch, Ryan Michael (Author) / Rez, Peter (Thesis advisor) / Alarcon, Ricardo O (Thesis advisor) / Vachaspati, Tanmay (Committee member) / Treacy, Michael M.J. (Committee member) / Arizona State University (Publisher)
Created2022
157551-Thumbnail Image.png
Description
Quantum Monte Carlo is one of the most accurate ab initio methods used to study nuclear physics. The accuracy and efficiency depend heavily on the trial wave function, especially in Auxiliary Field Diffusion Monte Carlo (AFDMC), where a simplified wave function is often used to allow calculations of larger systems.

Quantum Monte Carlo is one of the most accurate ab initio methods used to study nuclear physics. The accuracy and efficiency depend heavily on the trial wave function, especially in Auxiliary Field Diffusion Monte Carlo (AFDMC), where a simplified wave function is often used to allow calculations of larger systems. The simple wave functions used with AFDMC contain short range correlations that come from an expansion of the full correlations truncated to linear order. I have extended that expansion to quadratic order in the pair correlations. I have investigated this expansion by keeping the full set of quadratic correlations as well an expansion that keeps only independent pair quadratic correlations. To test these new wave functions I have calculated ground state energies of 4He, 16O, 40Ca and symmetric nuclear matter at saturation density ρ = 0.16 fm−3 with 28 particles in a periodic box. The ground state energies calculated with both wave functions decrease with respect to the simpler wave function with linear correlations only for all systems except 4He for both variational and AFDMC calculations. It was not expected that the ground state energy of 4He would decrease due to the simplicity of the alpha particle wave function. These correlations have also been applied to study alpha particle formation in neutron rich matter, with applications to neutron star crusts and neutron rich nuclei. I have been able to show that this method can be used to study small clusters as well as the effect of external nucleons on these clusters.
ContributorsPetrie, Cody L (Author) / Schmidt, Kevin E (Thesis advisor) / Shovkovy, Igor A. (Committee member) / Beckstein, Oliver (Committee member) / Alarcon, Ricardo O (Committee member) / Arizona State University (Publisher)
Created2019
155143-Thumbnail Image.png
Description
The OLYMPUS experiment measured the two-photon exchange contribution to elastic electron-proton scattering, over a range of four-momentum transfer from \(0.6 < Q^2 < 2.2\) \((\mathrm{GeV/c})^2\). The motivation for the experiment stemmed from measurements of the electric-to-magnetic form factor ratio of the proton \(\mu G_E/G_M\) extracted from polarization observables in

The OLYMPUS experiment measured the two-photon exchange contribution to elastic electron-proton scattering, over a range of four-momentum transfer from \(0.6 < Q^2 < 2.2\) \((\mathrm{GeV/c})^2\). The motivation for the experiment stemmed from measurements of the electric-to-magnetic form factor ratio of the proton \(\mu G_E/G_M\) extracted from polarization observables in polarized electron-proton scattering. Polarized electron-proton scattering experiments have revealed a significant decrease in \(\mu G_E/G_M\) at large \(Q^2\), in contrast to previous measurements from unpolarized electron-proton scattering. The commonly accepted hypothesis is that the discrepancy in the form factor ratio is due to neglected higher-order terms in the elastic electron-proton scattering cross section, in particular the two-photon exchange amplitude.

The goal of OLYMPUS was to measure the two-photon exchange contribution by measuring the positron-proton to electron-proton elastic scattering cross section ratio, \(\sigma_{e^+p}/\sigma_{e^-p}\). The two-photon exchange contribution is correlated to the deviation of the cross section ratio from unity.

In 2012, the OLYMPUS experiment collected over 4 fb\(^{-1}\) of \(e^+p\) and \(e^-p\) scattering data using electron and positron beams incident on a hydrogen gas target. The scattered leptons and protons were measured exclusively with a large acceptance spectrometer. OLYMPUS observed a slight rise in \(\sigma_{e^+p}/\sigma_{e^-p}\) of at most 1-2\% over a \(Q^2\) range of \(0.6 < Q^2 < 2.2\) \((\mathrm{GeV/c})^2\). This work discusses the motivations, experiment, analysis method, and the preliminary results for the cross section ratio as measured by OLYMPUS.
ContributorsIce, Lauren (Author) / Alarcon, Ricardo O (Thesis advisor) / Dugger, Michael (Committee member) / Lebed, Richard (Committee member) / Ritchie, Barry (Committee member) / Arizona State University (Publisher)
Created2016
155409-Thumbnail Image.png
Description
This work presents analysis and results for the NPDGamma experiment, measuring

the spin-correlated photon directional asymmetry in the $\vec{n}p\rightarrow

d\gamma$ radiative capture of polarized, cold neutrons on a parahydrogen

target. The parity-violating (PV) component of this asymmetry

$A_{\gamma,PV}$ is unambiguously related to the $\Delta I = 1$ component of

the hadronic weak interaction

This work presents analysis and results for the NPDGamma experiment, measuring

the spin-correlated photon directional asymmetry in the $\vec{n}p\rightarrow

d\gamma$ radiative capture of polarized, cold neutrons on a parahydrogen

target. The parity-violating (PV) component of this asymmetry

$A_{\gamma,PV}$ is unambiguously related to the $\Delta I = 1$ component of

the hadronic weak interaction due to pion exchange. Measurements in the second

phase of NPDGamma were taken at the Oak Ridge National Laboratory (ORNL)

Spallation Neutron Source (SNS) from late 2012 to early 2014, and then again in

the first half of 2016 for an unprecedented level of statistics in order to

obtain a measurement that is precise with respect to theoretical predictions of

$A_{\gamma,PV}=O(10^{-8})$. Theoretical and experimental background,

description of the experimental apparatus, analysis methods, and results for

the high-statistics measurements are given.
ContributorsBlyth, David (Author) / Alarcon, Ricardo O (Thesis advisor) / Ritchie, Barry G. (Committee member) / Comfort, Joseph R. (Committee member) / Schmidt, Kevin E (Committee member) / Arizona State University (Publisher)
Created2017
161902-Thumbnail Image.png
Description
The GlueX experiment housed in Hall D of the Thomas Jefferson National Laboratory was created to map the light meson spectrum in order to contribute to the Standard Model of particle physics by strengthening our understanding of the strong interaction. GlueX is a medium-energy photoproduction experiment that utilizes a linearly

The GlueX experiment housed in Hall D of the Thomas Jefferson National Laboratory was created to map the light meson spectrum in order to contribute to the Standard Model of particle physics by strengthening our understanding of the strong interaction. GlueX is a medium-energy photoproduction experiment that utilizes a linearly polarized photon beam to create hadronic forms of matter. By mapping the light meson spectrum, the GlueX collaboration hopes to identify meson states forbidden by the Constituent Quark Model. As a main research objective, the GlueX collaboration is searching for hybrid $q\bar{q}g$ meson states that exhibit exotic quantum numbers. One hybrid meson candidate is the $\eta'_1$, which is predicted to decay to $K^\ast\bar{K}$ and have a mass near $2.3~\mathrm{GeV}$ (\citeauthor{qn_exotic_status}, \citeyear{qn_exotic_status}; \citeauthor{hybrid_mesons}, \citeyear{hybrid_mesons}). At this time, very few meson states have been identified in the $2.0~\mathrm{GeV}$ mass region. This dearth of evidence for existing states requires any tool developed to search for meson states above $2.0~\mathrm{GeV}$ must be verified by looking at known meson states. In order to search for the $\eta'_1$ hybrid meson candidate in $\gamma p \rightarrow pK^+K^-\gamma\gamma$ events, meson states decaying $K^\ast\bar{K}$ that contribute to the low mass region must be identified, defined in this document as particles having masses between $1400$ and $1600~\mathrm{MeV}$. Identifying what meson states exist in the low mass region is also critical to mapping the light meson spectrum and determining the quark-gluonic content of those meson states. The results of a partial wave analysis (PWA) of $\gamma p \rightarrow pX$ where $X\rightarrow K^\ast\bar{K}$ from $\gamma p \rightarrow pK^+K^-\gamma\gamma$ events in GlueX are presented. In the $J=0$ invariant mass distribution, the $\eta(1405)$ and $\eta(1475)$ are identified, adding to the debate as to whether two pseudoscalar mesons exist in the low mass region. For the $J=1$ distribution, the $f_1(1420)$ and $f_1(1510)$ axial vector mesons are seen, where the former helps further elaborate on the $E\iota$ puzzle of the twentieth century \citep{E_iota_puzzle}. With respect to the controversy of meson states in the low mass region, evidence for the existence of the $f_2(1430)$ meson is strengthened in the $J=2$ distribution, and the $f'_2(1525)$ state is seen. This work lays a foundation for the ASU Meson Physics Group to continue a wider search for hybrid mesons in the $\gamma p \rightarrow pK^+K^-\gamma\gamma$ reaction topology.
ContributorsCole, Sebastian Miles (Author) / Dugger, Michael (Thesis advisor) / Ritchie, Barry (Committee member) / Alarcon, Ricardo (Committee member) / Shovkovy, Igor (Committee member) / Arizona State University (Publisher)
Created2021