Matching Items (25)
Filtering by

Clear all filters

149792-Thumbnail Image.png
Description
Ge1-ySny alloys represent a new class of photonic materials for integrated optoelectronics on Si. In this work, the electrical and optical properties of Ge1-ySny alloy films grown on Si, with concentrations in the range 0 ≤ y ≤ 0.04, are studied via a variety of methods. The first microelectronic devices

Ge1-ySny alloys represent a new class of photonic materials for integrated optoelectronics on Si. In this work, the electrical and optical properties of Ge1-ySny alloy films grown on Si, with concentrations in the range 0 ≤ y ≤ 0.04, are studied via a variety of methods. The first microelectronic devices from GeSn films were fabricated using newly developed CMOS-compatible protocols, and the devices were characterized with respect to their electrical properties and optical response. The detectors were found to have a detection range that extends into the near-IR, and the detection edge is found to shift to longer wavelengths with increasing Sn content, mainly due to the compositional dependence of the direct band gap E0. With only 2 % Sn, all of the telecommunication bands are covered by a single detector. Room temperature photoluminescence was observed from GeSn films with Sn content up to 4 %. The peak wavelength of the emission was found to shift to lower energies with increasing Sn content, corresponding to the decrease in the direct band gap E0 of the material. An additional peak in the spectrum was assigned to the indirect band gap. The separation between the direct and indirect peaks was found to decrease with increasing Sn concentration, as expected. Electroluminescence was also observed from Ge/Si and Ge0.98Sn0.02 photodiodes under forward bias, and the luminescence spectra were found to match well with the observed photoluminescence spectra. A theoretical expression was developed for the luminescence due to the direct band gap and fit to the data.
ContributorsMathews, Jay (Author) / Menéndez, Jose (Thesis advisor) / Kouvetakis, John (Thesis advisor) / Drucker, Jeffery (Committee member) / Chizmeshya, Andrew (Committee member) / Ponce, Fernando (Committee member) / Arizona State University (Publisher)
Created2011
152352-Thumbnail Image.png
Description
This thesis describes the fabrication of several new classes of Ge1-x-ySixSny materials with the required compositions and crystal quality to engineer the band gaps above and below that of elemental Ge (0.8 eV) in the near IR. The work initially focused on Ge1-x-ySixSny (1-5% Sn, 4-20% Si) materials grown on

This thesis describes the fabrication of several new classes of Ge1-x-ySixSny materials with the required compositions and crystal quality to engineer the band gaps above and below that of elemental Ge (0.8 eV) in the near IR. The work initially focused on Ge1-x-ySixSny (1-5% Sn, 4-20% Si) materials grown on Ge(100) via gas-source epitaxy of Ge4H10, Si4H10 and SnD4. Both intrinsic and doped layers were produced with defect-free microstructure and viable thickness, allowing the fabrication of high-performance photodetectors. These exhibited low ideality factors, state-of-the-art dark current densities and adjustable absorption edges between 0.87 and 1.03 eV, indicating that the band gaps span a significant range above that of Ge. Next Sn-rich Ge1-x-ySixSny alloys (2-4% Si and 4-10% Sn) were fabricated directly on Si and were found to show significant optical emission using photoluminescence measurements, indicating that the alloys have direct band gaps below that of pure Ge in the range of 0.7-0.55 eV. A series of Sn-rich Ge1-x-ySixSny analogues (y>x) with fixed 3-4% Si content and progressively increasing Sn content in the 4-10% range were then grown on Ge buffered Si platforms for the purpose of improving the material's crystal quality. The films in this case exhibited lower defect densities than those grown on Si, allowing a meaningful study of both the direct and indirect gaps. The results show that the separation of the direct and indirect edges can be made smaller than in Ge even for non-negligible 3-4% Si content, confirming that with a suitable choice of Sn compositions the ternary Ge1-x-ySixSny reproduces all features of the electronic structure of binary Ge1-ySny, including the sought-after indirect-to-direct gap cross over. The above synthesis of optical quality Ge1-x-ySixSny on virtual Ge was made possible by the development of high quality Ge-on-Si buffers via chemical vapor deposition of Ge4H10. The resultant films exhibited structural and electrical properties significantly improved relative to state-of-the-art results obtained using conventional approaches. It was found that pure Ge4H10 facilitates the control of residual doping and enables p-i-n devices whose dark currents are not entirely determined by defects and whose zero-bias collection efficiencies are higher than those obtained from samples fabricated using alternative Ge-on-Si approaches.
ContributorsXu, Chi (Author) / Kouvetakis, John (Thesis advisor) / Menéndez, Jose (Thesis advisor) / Chizmeshya, Andrew (Committee member) / Drucker, Jeffrey (Committee member) / Ponce, Fernando (Committee member) / Arizona State University (Publisher)
Created2013
151898-Thumbnail Image.png
Description
The thesis studies new methods to fabricate optoelectronic Ge1-ySny/Si(100) alloys and investigate their photoluminescence (PL) properties for possible applications in Si-based photonics including IR lasers. The work initially investigated the origin of the difference between the PL spectrum of bulk Ge, dominated by indirect gap emission, and the PL spectrum

The thesis studies new methods to fabricate optoelectronic Ge1-ySny/Si(100) alloys and investigate their photoluminescence (PL) properties for possible applications in Si-based photonics including IR lasers. The work initially investigated the origin of the difference between the PL spectrum of bulk Ge, dominated by indirect gap emission, and the PL spectrum of Ge-on-Si films, dominated by direct gap emission. It was found that the difference is due to the supression of self-absorption effects in Ge films, combined with a deviation from quasi-equilibrium conditions in the conduction band of undoped films. The latter is confirmed by a model suggesting that the deviation is caused by the shorter recombination lifetime in the films relative to bulk Ge. The knowledge acquired from this work was then utilized to study the PL properties of n-type Ge1-ySny/Si (y=0.004-0.04) samples grown via chemical vapor deposition of Ge2H6/SnD4/P(GeH3)3. It was found that the emission intensity (I) of these samples is at least 10x stronger than observed in un-doped counterparts and that the Idir/Iind ratio of direct over indirect gap emission increases for high-Sn contents due to the reduced gamma-L valley separation, as expected. Next the PL investigation was expanded to samples with y=0.05-0.09 grown via a new method using the more reactive Ge3H8 in place of Ge2H6. Optical quality, 1-um thick Ge1-ySny/Si(100) layers were produced using Ge3H10/SnD4 and found to exhibit strong, tunable PL near the threshold of the direct-indirect bandgap crossover. A byproduct of this study was the development of an enhanced process to produce Ge3H8, Ge4H10, and Ge5H12 analogs for application in ultra-low temperature deposition of Group-IV semiconductors. The thesis also studies synthesis routes of an entirely new class of semiconductor compounds and alloys described by Si5-2y(III-V)y (III=Al, V= As, P) comprising of specifically designed diamond-like structures based on a Si parent lattice incorporating isolated III-V units. The common theme of the two thesis topics is the development of new mono-crystalline materials on ubiquitous silicon platforms with the objective of enhancing the optoelectronic performance of Si and Ge semiconductors, potentially leading to the design of next generation optical devices including lasers, detectors and solar cells.
ContributorsGrzybowski, Gordon (Author) / Kouvetakis, John (Thesis advisor) / Chizmeshya, Andrew (Committee member) / Menéndez, Jose (Committee member) / Arizona State University (Publisher)
Created2013
151357-Thumbnail Image.png
Description
Group IV alloy films exhibit the ability to tune both band structure and lattice parameters and have recently attracted attention for their potential applications in Si-photonics and photovoltaics. In this work, several new approaches to produce these alloys directly on Si(100) and Ge(100) wafers are developed. For photovoltaics, use of

Group IV alloy films exhibit the ability to tune both band structure and lattice parameters and have recently attracted attention for their potential applications in Si-photonics and photovoltaics. In this work, several new approaches to produce these alloys directly on Si(100) and Ge(100) wafers are developed. For photovoltaics, use of Ge-buffered Si(100) wafers as a low cost platform for epitaxy of In1-xGaxAs layers was explored. The results indicate that this approach has promise for transitioning from bulk Ge platforms to virtual substrates for a significant cost reduction. The electrical and optical properties of Ge and Ge1-ySny layers produced using several different techniques were explored via fabrication of high performance heterostructure photodiodes. First, a new CVD approach to Ge-like materials was developed in which germanium is alloyed with very small amounts of tin. These alloys exhibited no significant difference in their structural properties or band gap compared to pure Ge, however superior photo response and reduced dark currents were observed from fabricated devices relative to pure Ge on Si reference diodes. Additionally, pure Ge/Si(100) photodiodes were fabricated using layers grown via reactions of Ge4H10 on Si(100) and found to exhibit low dark current densities with high collection efficiencies. Ge1-x-ySixSny materials represent the newest member of group IV alloy family. The ability to decouple the lattice constant and the band gap in this system has led to strong interest both for strain/confinement layers in quantum well structures, and as the possible "missing" 1 eV junction in multijunction photovoltaics. Recent progress in this field has allowed for the first time growth, fabrication and measurement of novel photodiodes based on Ge1-x-ySixSny. This work presents the material, electrical and optical properties of Ge1-x-ySixSny layers and photodiodes grown directly on Ge and Si wafers using two different synthetic approaches. A series of photodiodes containing Sn concentrations from 1-5%, all lattice matched to Ge, was fabricated. The devices exhibited low dark current densities with high collection efficiencies as required for photovoltaics. By measuring the photoresponse, tunable band gaps ranging from 0.85 eV to 1.02 eV were observed.
ContributorsBeeler, Richard (Author) / Kouvetakis, John (Thesis advisor) / Menéndez, Jose (Committee member) / Chizmeshya, Andrew (Committee member) / Arizona State University (Publisher)
Created2012
135841-Thumbnail Image.png
Description
Over the past few years, the issue of childhood trauma in the United States has become significant. A growing number of children are experiencing abuse, neglect, or some other form of maltreatment each year. Considering the stressful home lives of maltreated children, the one sure sanctuary is school. However, this

Over the past few years, the issue of childhood trauma in the United States has become significant. A growing number of children are experiencing abuse, neglect, or some other form of maltreatment each year. Considering the stressful home lives of maltreated children, the one sure sanctuary is school. However, this idea requires teachers to be actively involved in identifying and caring for the children who need it most. Traumatic childhood experiences leave lasting scars on its victims, so it is helpful if teachers learn how to identify and support children who have lived through them. It is unfortunate that teachers will most likely encounter children throughout their career who have experienced horrendous things, but it is a reality. With this being said, teachers need to develop an understanding of what traumatized children live with, and learn how to address these issues with skilled sensitivity. Schools are not just a place where children learn how to read and write; they build the foundation for a successful life. This project was designed to provide teachers with a necessary resource for helping children who have suffered traumatic experiences. The methodology of this project began with interviews with organizations specializing in working with traumatized children such as Arizonans for Children, Free Arts for Abused Children, The Sojourner Center, and UMOM. The next step was a review of the current literature on the subject of childhood trauma. The findings have all been compiled into one, convenient document for teacher use and distribution. Upon completion of this document, an interactive video presentation will be made available through an online education website, so that distribution will be made simpler. Hopefully, teachers will share the information with people in their networks and create a chain reaction. The goal is to make it available to as many teachers as possible, so that more children will receive the support they need.
ContributorsHanrahan, Katelyn Ann (Author) / Dahlstrom, Margo (Thesis director) / Kelley, Michael (Committee member) / Division of Teacher Preparation (Contributor) / Sanford School of Social and Family Dynamics (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136610-Thumbnail Image.png
Description
STEM education stands for science, technology, engineering and mathematics, and is necessary for students to keep up with global competition in the changing job market, technological advancements and challenges of the future. However, American students are lacking STEM achievement at the state, national and global levels. To combat this lack

STEM education stands for science, technology, engineering and mathematics, and is necessary for students to keep up with global competition in the changing job market, technological advancements and challenges of the future. However, American students are lacking STEM achievement at the state, national and global levels. To combat this lack of achievement I propose that STEM instruction should begin in preschool, be integrated into the curriculum and be inquiry based. To support this proposal I created a month-long physics unit for preschoolers in a Head Start classroom. Students investigated the affect of incline, friction and weight on the distance of a rolling object, while developing their pre-math, pre-literacy and social emotional skills.
ContributorsGarrison, Victoria Leigh (Author) / Kelley, Michael (Thesis director) / Dahlstrom, Margo (Committee member) / Barrett, The Honors College (Contributor) / Division of Teacher Preparation (Contributor)
Created2015-05
149608-Thumbnail Image.png
Description
Nuclear proliferation concerns have resulted in a desire for radiation detectors with superior energy resolution. In this dissertation a Monte Carlo code is developed for calculating energy resolution in gamma-ray detector materials. The effects of basic material properties such as the bandgap and plasmon resonance energy are studied using

Nuclear proliferation concerns have resulted in a desire for radiation detectors with superior energy resolution. In this dissertation a Monte Carlo code is developed for calculating energy resolution in gamma-ray detector materials. The effects of basic material properties such as the bandgap and plasmon resonance energy are studied using a model for inelastic electron scattering based on electron energy-loss spectra. From a simplified "toy model" for a generic material, energy resolution is found to oscillate as the plasmon resonance energy is increased, and energy resolution can also depend on the valence band width. By incorporating the model developed here as an extension of the radiation transport code Penelope, photon processes are also included. The enhanced version of Penelope is used to calculate the Fano factor and average electron-hole pair energy in semiconductors silicon, gallium arsenide, zinc telluride, and scintillators cerium fluoride and lutetium oxyorthosilicate (LSO). If the effects of the valence band density-of-states and phonon scattering are removed, the calculated energy-resolution for these materials is fairly close to that for a toy model with a uniform electron energy-loss probability density function. This implies that the details of the electron cascade may in some cases have only a marginal effect on energy resolution.
ContributorsNarayan, Raman (Author) / Rez, Peter (Thesis advisor) / Spence, John (Committee member) / Ponce, Fernando (Committee member) / Comfort, Joseph (Committee member) / Chizmeshya, Andrew (Committee member) / Arizona State University (Publisher)
Created2011
168665-Thumbnail Image.png
Description
Disordered many-body systems are ubiquitous in condensed matter physics, materials science and biological systems. Examples include amorphous and glassy states of matter, granular materials, and tissues composed of packings of cells in the extra-cellular matrix (ECM). Understanding the collective emergent properties in these systems is crucial to improving the capability

Disordered many-body systems are ubiquitous in condensed matter physics, materials science and biological systems. Examples include amorphous and glassy states of matter, granular materials, and tissues composed of packings of cells in the extra-cellular matrix (ECM). Understanding the collective emergent properties in these systems is crucial to improving the capability for controlling, engineering and optimizing their behaviors, yet it is extremely challenging due to their complexity and disordered nature. The main theme of the thesis is to address this challenge by characterizing and understanding a variety of disordered many-body systems via unique statistical geometrical and topological tools and the state-of-the-art simulation methods. Two major topics of the thesis are modeling ECM-mediated multicellular dynamics and understanding hyperuniformity in 2D material systems. Collective migration is an important mode of cell movement for several biological processes, and it has been the focus of a large number of studies over the past decades. Hyperuniform (HU) state is a critical state in a many-particle system, an exotic property of condensed matter discovered recently. The main focus of this thesis is to study the mechanisms underlying collective cell migration behaviors by developing theoretical/phenomenological models that capture the features of ECM-mediated mechanical communications in vitro and investigate general conditions that can be imposed on hyperuniformity-preserving and hyperuniformity-generating operations, as well as to understand how various novel transport physical properties arise from the unique hyperuniform long-range correlations.
ContributorsZheng, Yu (Author) / Jiao, Yang (Thesis advisor) / Zhuang, Houlong (Committee member) / Beckstein, Oliver (Committee member) / Ros, Robert (Committee member) / Arizona State University (Publisher)
Created2022
190761-Thumbnail Image.png
Description
In this thesis, applications of sparsity, specifically sparse-tensors are motivated in physics.An algorithm is introduced to natively compute sparse-tensor's partial-traces, along with direct implementations in popular python libraries for immediate use. These applications include the infamous exponentially-scaling (with system size) Quantum-Many-Body problems (both Heisenberg/spin-chain-like and Chemical Hamiltonian models). This sparsity

In this thesis, applications of sparsity, specifically sparse-tensors are motivated in physics.An algorithm is introduced to natively compute sparse-tensor's partial-traces, along with direct implementations in popular python libraries for immediate use. These applications include the infamous exponentially-scaling (with system size) Quantum-Many-Body problems (both Heisenberg/spin-chain-like and Chemical Hamiltonian models). This sparsity aspect is stressed as an important and essential feature in solving many real-world physical problems approximately-and-numerically. These include the original motivation of solving radiation-damage questions for ultrafast light and electron sources.
ContributorsCandanedo, Julio (Author) / Beckstein, Oliver (Thesis advisor) / Arenz, Christian (Thesis advisor) / Keeler, Cynthia (Committee member) / Erten, Onur (Committee member) / Arizona State University (Publisher)
Created2023
190714-Thumbnail Image.png
Description
This thesis explores a diverse array of topics related to the role of dynamic allostery in regulating protein functions. Allostery is the phenomenon where a catalytic pocket responds to perturbations caused by binding at another distant site. This response often involves a conformational change resulting in a protein function alteration.

This thesis explores a diverse array of topics related to the role of dynamic allostery in regulating protein functions. Allostery is the phenomenon where a catalytic pocket responds to perturbations caused by binding at another distant site. This response often involves a conformational change resulting in a protein function alteration. However, it is essential to note the existence of dynamic allostery mechanisms that regulate protein function without relying on conformational changes but on dynamic motions. Within this thesis, position-specific equilibrium dynamics-based metrics like Dynamic Flexibility Index and Dynamic Coupling Index are employed to quantify the contributions of specific residues to protein dynamics. I investigated the role of dynamics in protein binding of the WW domain. In particular, I focused on how the mutations of distal positions modulate the binding site dynamics. By employing Dynamic Flexibility Index, I discovered that a residue, 10T, located distally from the binding pocket, plays a significant role in the observed dynamics difference between two variants: N21 (a native folded WW domain not binding Group I peptide) and CC16_N21 (an artificial WW domain binding Group I peptide). The T10H variant, created by exchanging the position 10 residue, enhances flexibility at positions 10 and 16. Consequently, this modification has led to an enhancement in the binding function of N21, enabling it to bind to Group I peptide effectively. Moreover, I investigated the influence of dynamic allostery on protein binding specificity, specifically in the PDZ domain PSD95. To gain insights into the binding process and accurately measure binding affinity, I employed two parallel computational approaches: Adaptive BP-docking and Steered Molecular Dynamics. These methods allowed me to model the binding interactions and quantify the binding strength robustly and comprehensively. The significance of allostery can serve as foundational knowledge in Deep Learning models, enabling the efficient mapping of protein sequences to their corresponding functionalities. One particular metric, Dynamic Coupling Index asymmetry, offers valuable insights into how the three-dimensional network of interactions facilitates communication within a protein structure. Leveraging these interactions, I developed a deep neural network architecture demonstrating enhanced capability in capturing epistatic interactions within Beta-lactamase and protein G function.
ContributorsLu, Jin (Author) / Ozkan, Banu (Thesis advisor) / Mills, Jeremy (Committee member) / Hariadi, Rizal (Committee member) / Beckstein, Oliver (Committee member) / Arizona State University (Publisher)
Created2023